Math, asked by hasini4697, 2 days ago

A godown is in the form of cuboid of measure 60m *40m* 30m.how many cubical boxes can be stored in it if side of I box is 10cm​

Answers

Answered by Anonymous
2

\huge\orange{Answer:-}

Volume of one box = 1/1000 m³

Volume of godown = 60 × 40 × 30 = 72000 m³

Number of boxes that can be stored in the godown= Volume of the godown/Volume of one box

= 60 × 40 × 30/1/1000

= 72000000

Hence the number of cuboidal boxes that can be stored in the godown is 72000000.

I hope you have understood the ans yaar

Answered by StarFighter
17

Answer:

Given :-

  • A godown is in the form of cuboid of measure 60 m × 40 m × 30 m.
  • Side of cube is 10 cm.

To Find :-

  • How many cubical boxes can be stored.

Formula Used :-

\clubsuit Volume Of Cuboid Formula :

\small \bigstar \: \: \sf\boxed{\bold{\pink{Volume_{(Cuboid)} =\: Length \times Breadth \times Height}}}\: \: \: \bigstar\\

\clubsuit Volume Of Cube Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Volume_{(Cube)} =\: (Side)^3}}}\: \: \: \bigstar\\

Solution :-

First, we have to find the volume of godown :

Given :

  • Length = 60 m
  • Breadth = 40 m
  • Height = 30 m

According to the question by using the formula we get,

\small \implies \sf\bold{\blue{Volume_{(Cuboid)} =\: Length \times Breadth \times Height}}\\

\implies \sf Volume_{(Cuboid)} =\: 60\: m \times 40\: m \times 30\\

\implies \sf Volume_{(Cuboid)} =\: 2400\: m^2 \times 30\: m\\

\implies \sf\bold{\green{Volume_{(Cuboid)} =\: 72000\: m^3}}\\

Now, we have to find the volume of cubical box :

Given :-

\leadsto \sf Side =\: 10\: cm =\: \dfrac{1}{10}\: m =\: \sf\bold{0.1\: m}\\

According to the question by using the formula we get,

\implies \sf\bold{\blue{Volume_{(Cube)} =\: (Side)^3}}\\

\implies \sf Volume_{(Cube)} =\: (0.1\: m)^3\\

\implies \sf Volume_{(Cube)} =\: 0.1\: m \times 0.1\: m \times 0.1\: m\\

\implies \sf Volume_{(Cube)} =\: 0.01\: m^2 \times 0.1\: m\\

\implies \sf\bold{\green{Volume_{(Cube)} =\: 0.001\: m^3}}\\

Now, we have to find how many cubical boxes can be stored :

Given :

  • Volume of Cuboid = 72000
  • Volume of Cube = 0.001

According to the question :

\small \implies \sf\bold{\blue{Number\: of\: Boxes =\: \dfrac{Volume_{(Cuboid)}}{Volume_{(Cube)}}}}\\

\implies \sf Number\: of\: Boxes =\: \dfrac{72000\: \cancel{m^3}}{0.001\: \cancel{m^3}}\\

\implies \sf Number\: of\: Boxes =\: \dfrac{72000}{0.001}\\

\implies \sf\bold{\red{Number\: of\: Boxes =\: 72000000}}\\

\small \sf\bold{\purple{\underline{\therefore\: 72000000\: cubical\: boxes\: can\: be\: stored\: .}}}\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions