Chemistry, asked by sruthitalluri861, 1 month ago

A golf ball has a mass of 100g, and a speed of 10 m/s. If the speed can be measured within accuracy
of 2%, calculate the uncertainty in the position(metre)
1)10-30
2)331.5x10-34
3)10-28
4)6.63x10-31​

Answers

Answered by Anonymous
15

Answer:

Heisenbergs uncertainty Principle:

• mass of golf ball (m) = 100 g = 100/1000 = 0.1 kg

• Exact value = 10 m/s

• Accuracy = 2%

• Uncertainty in velocity (∆v) = ?

• Uncertainty in position (∆x) = ?

First of all let's calculate the uncertainty in velocity (v) :

\longrightarrow \:  \sf \Delta v =Exact  \: value \times Accuracy \\

\longrightarrow \:  \sf \Delta v = \dfrac{10 \times 2}{100} \\

\longrightarrow \:  \sf \Delta v = \dfrac{20}{100} \\

\longrightarrow \:  \sf \Delta v = \dfrac{2}{10} \\

\longrightarrow \:  \sf \Delta v = \dfrac{1}{5} \\

\longrightarrow \:  \sf \Delta v = 0.2 \\

Now, we can find the uncertainty in position (x) :

\longrightarrow \:  \sf \Delta x.\Delta p= \dfrac{h}{4\pi} \\

\longrightarrow \:  \sf \Delta x.m\Delta v= \dfrac{h}{4\pi} \\

\longrightarrow \:  \sf \Delta x.\Delta v= \dfrac{h}{4\pi m} \\

\longrightarrow \:  \sf \Delta x.\Delta v= \dfrac{0.53 \times  {10}^{ - 34} }{ m} \\

\longrightarrow \:  \sf \Delta x \times 0.2= \dfrac{0.53 \times  {10}^{ - 34} }{0.1} \\

\longrightarrow \:  \sf \Delta x = \dfrac{0.53 \times  {10}^{ - 34} }{0.1 \times 0.2} \\

\longrightarrow \:  \sf \Delta x = \dfrac{0.53 \times  {10}^{ - 34} }{1 \times  {10}^{ - 1}  \times 2 \times  {10}^{ - 1} } \\

\longrightarrow \:  \sf \Delta x = \dfrac{0.53 \times  {10}^{ - 34} }{   2 \times  {10}^{ - 2} } \\

\longrightarrow \:  \sf \Delta x = \dfrac{0.53 \times  {10}^{ - 34}  \times  {10}^{2} }{  2 } \\

\longrightarrow \:  \sf \Delta x = \dfrac{0.53 \times  {10}^{ - 32}  }{  2 } \\

\longrightarrow \:  \sf \Delta x = 0.265\times  {10}^{ - 32}   \\

\longrightarrow \:  \sf \Delta x = 2.65\times {10}^{ - 1} \times    {10}^{ - 32}   \\

\longrightarrow \: \underline{ \boxed{   \orange{\bf \Delta x = 2.65\times  {10}^{ - 33}   \: m}}} \\

Similar questions