Chemistry, asked by Anonymous, 6 months ago

A golf ball has a mass of 40 kg, and a speed of 45 m/s. If the speed can be measured within the accuracy of 2%. Calculate the uncertainty in the position.

Answers

Answered by rocky200216
25

\huge\bf{\color{indigo}GIVEN} \\

  • Mass of a golf ball is 40g.

  • Speed of that golf ball has 45 m/s.

✈︎ The speed can be measured within the accuracy of 2%.

 \\

\huge\bf\blue{TO\:FIND} \\

  • The uncertainty in the position.

 \\

\huge\bf\orange{SOLUTION} \\

☘️ We know the Heisenberg uncertainty principle,

\red\bigstar\:\bf\purple{\triangle{x}\:=\:\dfrac{h}{4\pi{m}\triangle{v}}\:} \\

\bf\pink{Where,}

  • x = Uncertainty in the position.

  • h = Planks Constant.

  • m = mass of particle velocity.

  • v = Uncertainty in the velocity.

\bf{\color{lime}We\:have,}

  • h = \bf\gray{6.626\times{10^{-34}}\:J.s}

  • π = \bf\gray{3.14}

  • m = \bf\gray{40\:g\:=\:0.04\:kg}

  • v = 2% of v \sf{=\:\dfrac{2}{100}\times{45}\:=\:\gray{0.9\:m.s^{-1}}} \\

\hookrightarrow\:\bf{\triangle{x}\:=\:\dfrac{6.626\times{10^{-34}}}{4\times{3.14}\times{0.04}\times{0.9}}\:} \\

\hookrightarrow\:\bf{\triangle{x}\:=\:\dfrac{6.626\times{10^{-34}}}{0.45216}\:} \\

\hookrightarrow\:\bf\green{\triangle{x}\:=\:14.6541\times{10^{-34}}\:m} \\

\huge\red\therefore The uncertainty in the position is \bf{\triangle{x}\:,i.e.\:\blue{14.6541\times{10^{-34}}\:m}}.

Similar questions