Chemistry, asked by Anonymous, 10 hours ago

A golf ball has a mass of 40g ,and a speed of 45m /s. If the speed can be measured within accuracy of 2%,calculate the uncertainty in the position. ​

mood oph ~
:/​

Answers

Answered by Anonymous
5

Answer:

• mass of ball (m) = 40 g = 40/1000 = 0.04 kg

Accuracy = 2%

• Exact value = 45 m/s

Planck's constant (h) = 6.63 × 10-³⁴ Js

Uncertainty in velocity:

\longrightarrow\:\sf \Delta v = Exact \:  value\times Accuracy \\

\longrightarrow\:\sf \Delta v =  \dfrac{45 \times 2}{100}  \\

\longrightarrow\:\sf \Delta v =  \dfrac{90}{100}  \\

\longrightarrow\:\sf \Delta v =  \dfrac{9}{10}  \\

\longrightarrow\: \underline{ \boxed{ \orange{\bf \Delta v = 0.9 \:  {ms}^{ - 1}}}}   \\

Heisenbergs uncertainty Principle:

\longrightarrow\:\sf \Delta x.\Delta v =  \dfrac{h}{4\pi m}  \\

\longrightarrow\:\sf \Delta x. 0.9=  \dfrac{6.63 \times  {10}^{ - 34} }{4 \times 3.14 \times0.04 }  \\

\longrightarrow\:\sf \Delta x. 0.9=  \dfrac{0.53 \times  {10}^{ - 34} }{0.04 }  \\

\longrightarrow\:\sf \Delta x=  \dfrac{0.53 \times  {10}^{ - 34} }{0.04  \times 0.9}  \\

\longrightarrow\:\sf \Delta x=  \dfrac{0.53 \times  {10}^{ - 34} }{4 \times  {10}^{ - 2}   \times 9 \times  {10}^{ - 1} }  \\

\longrightarrow\:\sf \Delta x=  \dfrac{0.53 \times  {10}^{ - 34} }{ 36 \times  {10}^{ -3} }  \\

\longrightarrow\:\sf \Delta x=  \dfrac{0.53 \times  {10}^{ - 34} \times  {10}^{3}  }{ 36 }  \\

\longrightarrow\:\sf \Delta x=  \dfrac{53 \times  {10}^{ - 31} \times  {10}^{ - 2}  }{ 36 }  \\

\longrightarrow\: \underline{ \boxed{ \red{\bf \Delta x=  1.473 \times  {10}^{ - 33 } \: m }}}   \\


Anonymous: Thanks for the Brainliest! :-)
Answered by biswaspramila347
2

Answer:

Use Heisenberg's uncertainty principle.

For example [Δx=

4πmΔv

h

]

Here, Δx is the uncertainty in the position.

Δv is the uncertainty in velocity

m is the mass of Particle.

Given,m=40g=0.04kg

Δv=2%ofv=2×

100

45

=0.9m/s

h=6.626×10

−34

J.s

Now,Δx=

(4×3.14×0.04×0.9)

6.626×10

−34

=1.4654×10

−33

m

please mark me brainliest

Similar questions