A golf ball is hit with an initial velocity of 50 m/s at an angle of 45 above the horizontal. how far will the ball travel horizontally before it hits the ground?
Answers
Answered by
3
u=50
A=45
g=9.8
Range of projectile R = u² sin2A/g
R= 50²/ 9.8
= 2500/9.8
= 255.10 m
if you take g=10
then,
R = 250m
A=45
g=9.8
Range of projectile R = u² sin2A/g
R= 50²/ 9.8
= 2500/9.8
= 255.10 m
if you take g=10
then,
R = 250m
Answered by
2
Heya
Horizontal Component of the Ball's velocity =
![50 \cos( {45}^{o} ) 50 \cos( {45}^{o} )](https://tex.z-dn.net/?f=50+%5Ccos%28+%7B45%7D%5E%7Bo%7D+%29+)
First Let's Answer "HOW LONG"
Vertical Component =
![50 \sin( {45}^{o} ) 50 \sin( {45}^{o} )](https://tex.z-dn.net/?f=50+%5Csin%28+%7B45%7D%5E%7Bo%7D+%29+)
Gravity = ( -g )
=> t = 2( 0 - 50 sin( 45° ) )/(-g) = 10 sin( 45° )
Now, HOW FAR :
![vt = 50 \cos( {45}^{o} ) \times 10 \sin( {45}^{o} ) = 250m vt = 50 \cos( {45}^{o} ) \times 10 \sin( {45}^{o} ) = 250m](https://tex.z-dn.net/?f=vt+%3D+50+%5Ccos%28+%7B45%7D%5E%7Bo%7D+%29++%5Ctimes+10+%5Csin%28+%7B45%7D%5E%7Bo%7D+%29++%3D+250m)
_________________________________
Or,
HORIZONTAL Range :
![\frac{ v_{0}^{2} \sin(2\theta) }{g} \frac{ v_{0}^{2} \sin(2\theta) }{g}](https://tex.z-dn.net/?f=+%5Cfrac%7B+v_%7B0%7D%5E%7B2%7D+%5Csin%282%5Ctheta%29+++%7D%7Bg%7D+)
![= \frac{ {50}^{2} \sin( {90}^{o} ) }{g} = \frac{ {50}^{2} \sin( {90}^{o} ) }{g}](https://tex.z-dn.net/?f=+%3D++%5Cfrac%7B+%7B50%7D%5E%7B2%7D+%5Csin%28+%7B90%7D%5E%7Bo%7D+%29++%7D%7Bg%7D+)
![= 250m = 250m](https://tex.z-dn.net/?f=+%3D+250m)
∆ Note : We assume 'g' as 10 m/s^2
Horizontal Component of the Ball's velocity =
First Let's Answer "HOW LONG"
Vertical Component =
Gravity = ( -g )
=> t = 2( 0 - 50 sin( 45° ) )/(-g) = 10 sin( 45° )
Now, HOW FAR :
_________________________________
Or,
HORIZONTAL Range :
∆ Note : We assume 'g' as 10 m/s^2
Similar questions
Business Studies,
9 months ago
Math,
9 months ago
Math,
9 months ago
Math,
1 year ago
Physics,
1 year ago