Physics, asked by Aakashsharma1615, 6 months ago

A gun of mass 3kg fires a bullet as mass 30g the bullet takes 0.003 to move through the barrel of the gun and acquires a velocity of 100m/s calculate
(1.) The velocity with which the gun recoils.

Answers

Answered by sainiinswag
1

Answer:

Plzzz Follow me ...

.

Plzzzzz Thanks and like my Answer...

Attachments:
Answered by ItzAritraKz22
6

Solution:-

Given:-

Mass \:  of  \: the  \: gun \: (m _{1}  )= 3 \:  kg

Mass  \: of  \: the  \: bullet \: ( m_{2} )= 30g = 0.03 \: kg

Velocity \: of \: the \: bullet \: ( v_{2} ) = 100 \:{ m/s}

To Find:-

Recoil  \: velocity( v_{1})

Formula:-

Formula:- =  > Law \:  of \:  conservation  \: of \:  momentum \:  :-  \\ m_{1}u_{1}  +  m_{2}u_{2} = m_{1}v_{1}  +  m_{2}v_{2} \\ =  >  acceleration \:(a)  =  \frac{(v - u)}{t}   \\  =  > Force = mass \times acceleration

But  \: ,  \: Initial  \: velocity \:  of \:  the \:  Gun  \: (u_{1})=  \: 0 \:  m/ s  \\ And \: , \:  Initial  \: velocity \:  of \:  the  \: Bullet  \:(u_{2}) = \:  0 \:  m/s \\

Because at First , the Gun and the Bullet is at rest.

So, Actual Formula :-

m_{1}u_{1}  +  m_{2}u_{2} = m_{1}v_{1}  +  m_{2}v_{2} \\  =  > m_{1}  +  0  +  m_{2}  +  0 = m_{1}v_{1}  +  m_{2}v_{2} \\  =  > 0 =   m_{1}v_{1}  +  m_{2}v_{2} \\  =  > m_{1}v_{1}   =  -   m_{2}v_{2} \\

By the Problem:-

Plot the value:-

i) \: m_{1}v_{1}   =  -   m_{2}v_{2} \\  =  > 3 \times v_{1} =  - 0.03 \times 100 \\  =  > v_{1} =  \frac{100 \times  - 0.03}{ 3 }  \\  =  >  - 1m/s

ii)  The Force  exerted on Gun due to recoil of the Gun.

ii) Initial  \: velocity  \: of  \: the \:  Gun  \: ( u_{1}) \: = \:  0 \: m/s \\Final  \: velocity  \: of \:  the \:  Gun \:  ( v_{1}) =  - 1 \: m/s \\time(t) = 0.003 \: s \\ acceleration \:(a)  =  \frac{(v - u)}{t}  =  \frac{ - 1 - 0}{0.003}  \\  =  >  \frac{ - 1000}{3} m/ {s}^{2}

Force = mass \times acceleration \\  =  > 3 \times  \frac{ - 1000}{3}  \\  =  >  - 1000N

Similar questions