Physics, asked by Anonymous, 3 months ago

A hard wood cylinder of radius 2.0 cm and length 75 cm weighs 800 g. Calculate the density of wood in kg/m³.

Answers

Answered by Anonymous
398

Solution:

Given :

  • Radius(r) = 2.0cm
  • Length(l) = 75cm
  • Mass(m) = 800g

To find :

  • Density of wood

Solution :

\large\thereforeVolume (V) = πr²l

= \sf{\dfrac{22}{7}\times (2.0)^2 \times 75 = \dfrac{6600}{7}g/cm^3}

  • Finding the density now,

\therefore Density(D) = \sf\dfrac{Mass(M)}{Volume(V)}

= \sf{\dfrac{800}{\frac{6600}{7}} = \dfrac{800 \times 7}{6600} = \dfrac{28}{33}g/cm^3}

= \sf{\dfrac{28}{33} \times 1000kg/m^3 = 848.5 kg/m^3}

Hence , Density of the wood is 848.5 kg/m³.

Answered by ltZzAditya
260

Given:

Radius(r) = 2.0cm

Length(l) = 75cm

Mass(m) = 800g

To find :

  • Density of wood

Solution :

Density(D) = \tt\dfrac{Mass(M)}{Volume(V)}

Mass = 800g

Volume = ?

\tt{Finding\ Volume\ of\ cylinder = πr²l}

= \tt{\dfrac{22}{7}\times (2.0)^2 \times 75 = \dfrac{6600}{7}g/cm^3}

= Volume = \tt\dfrac{6600}{7}

Now, we have Mass and Volume to find Density.

Finding the density now,

= \tt{\dfrac{800}{\frac{6600}{7}} = \dfrac{800 \times 7}{6600} = \dfrac{28}{33}g/cm^3}

= \tt{\dfrac{28}{33} \times 1000kg/m^3 = {\underline 848.5 kg/m^3}}

Hence , Density of the wood is 848.5 kg/m³.

_____________________

More Formulas for finding Volume.

  • Volume of cube = Side³
  • Volume of cuboid = l×b×h
  • Volume of sphere = 4/3πr³
Similar questions