A heap of wheat is in the form of a cone of diameter 9 m and height 3.5 m. Find its volume. How much canvas cloth is required to just cover the heap? (Use π =3.14)
Answers
Given : A heap of wheat is in the form of a cone of diameter 9 m and height 3.5 m.
radius,r = diameter/2 = 9/2 = 4.5 m
height , h = 3.5 m
Slant height (l)² = r² + h²
l = √r² + h²
l = √4.5² + 3.5²
l = √20.25 + 12.25
l = √32.5
Slant height , l = 5.70 m
∴ Volume of the heap , V = 1/3 πr²h
V = ⅓ × 3.14 × (4.5)² × 3.5
V = ⅓ × 3.14 × 4.5 × 4.5 × 3.5
V = 3.14 × 1.5 × 4.5 × 3.5
V = 74.1825 m³
Hence, Volume of the heap is 74.1825 m³.
Area of canvas required ,A = πrl
A = 3.14 × 4.5 × 5.7
A = 80.54 m²
Area of canvas required = 80.54 m²
Hence, 80.54 m² canvas cloth is required to just cover the heap.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
Find the capacity in litres of a conical vessel with :
(i) radius 7 cm, slant height 25 cm
(ii) height 12 cm, slant height 13 cm.
https://brainly.in/question/15912312
The height of a cone is 15 cm. If its volume is 1570 cm^3 , find the diameter of its base. [Use π = 3.14]
https://brainly.in/question/1429675
Given:
Diameter = 9 cm
Radius = d/2 = 9/2 = 4.5 cm
Height = 3.5 cm
To find:
Volume and area for canvas cloth
Solution:
Volume of a cone = 1/3πr²h
Volume = 1/3 × 3.14 × 4.5 × 4.5 × 3.5
Volume = 74.1825 cu cm
For area of canvas, we need the curved surface area:
l = √r² + h²
l = √32.5
l = 5.7 cm
Curved surface area of a cone = πrl
CSA = 3.14 × 4.5 × 5.7