Physics, asked by fghdst4556, 8 months ago

A helicopter is ascending vertically upward with a speed of 10 m/s. At a height 12 m above the earth,a package is dropped from the window. How much time does it take for the package to reach the ground ?

Answers

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time\:taken=2.843\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Height = 12 \: m \\  \\ \tt:  \implies Initial \: speed =  - 10 \: m/s \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Time \: taken \: to \: reach \: package \: on \: ground =?

• According to given question :

\tt \circ \: Acceleration = 10 \:   {m/s}^{2}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies 12 =  - 10 \times t +  \frac{1}{2}  \times 10 \times  {t}^{2}  \\  \\ \tt:  \implies 12 =  - 10t + 5 {t}^{2}  \\  \\ \tt:  \implies  {5t}^{2}  - 10t - 12 = 0 \\  \\ \tt:  \implies t =  \frac{   - ( - 10)  \pm \sqrt{ {( - 10)}^{2}  - 4 \times 5 \times  - 12} }{2 \times 5}  \\  \\ \tt:  \implies t =  \frac{10 \pm \sqrt{100 + 240} }{10}  \\  \\ \tt:  \implies t =  \frac{10  \pm \sqrt{340} }{10}  \\  \\ \tt:  \implies t =  \frac{10 \pm18.43}{10}  \\  \\  \tt:  \implies t =  \frac{10 + 18.43}{10}  \\  \\  \green{\tt:  \implies t = 2.843 \: sec} \\  \\   \green{\tt \therefore Time \: taken \:  to \: reach \: ground \: is \: 2.843 \: sec}

Similar questions