Math, asked by TbiaSamishta, 1 year ago

A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area ofthe bowl.

Answers

Answered by iHelper
9
Hello!

• Inner radius, r = \bf{5 \:cm}
• Outer radius, R = 5 + 0.25 cm = \bf{5.25\: cm}

Then,

\underline{\bf{Outer\:curved\:surface\:Area}} :

\sf 4πr^{2} \\ \\ \implies 4 \times \dfrac{22}{7} \times (5.25)^{2} \\ \\ \implies \dfrac{2425.5}{7} \implies \boxed{\red{\bf{346.5\:cm^{2}}}}

Cheers!
Answered by sk98764189
0

Answer:

173.25\ cm^{2}

Step-by-step explanation:

According to the question, Inner radius of the ball is 5 cm.

Thick of ball = 0.25 cm

we are to find the outer curved surface area.

In this case, we need to find outer radius.

Hence outer radius, r = 5 + 0.25

                                    = 5.25 cm

Now

we know that,

Curved surface area of hemisphere = (1/2) surface area of a sphere

                                                            = \frac{1}{2}\times2\pi\ r^{2}

                                                            = 2\pi\ r^{2}

Outer curved surface area of a hemispherical ball = 2\pi\ r^{2}

                                                                                      = 2\times\frac{22}{7}\times5.25\times5.25

                                                                                      = 173.25\ cm^{2}

Hence the outer curved surface area of the ball is 173.25\ cm^{2}

.

Similar questions
Math, 1 year ago