A hemispherical dome is constructed from 1cm thick metallic sheet, if the inner radius of the dome is 99cm, then find the volume of used metal sheet??
Answers
Answered by
15
Inner radius of dome r = 99 Cm
Outer radius of the Dome = 99 + 1
= 100 Cm
Thus
Inner volume of dome = 2/3 pi r^3
= 2/3 pi * 99^3
= 2.03 m^3
Outer volume of Dome = 2/3 pi * R^3
= 2/3 * 3.14 * 1
= 2.09 m^3
Thus
volume of sheet = 2.09 - 2.03
= 0.06 m^3
Outer radius of the Dome = 99 + 1
= 100 Cm
Thus
Inner volume of dome = 2/3 pi r^3
= 2/3 pi * 99^3
= 2.03 m^3
Outer volume of Dome = 2/3 pi * R^3
= 2/3 * 3.14 * 1
= 2.09 m^3
Thus
volume of sheet = 2.09 - 2.03
= 0.06 m^3
yoyo1122:
thank u so much.should it be .99
Answered by
16
Solution :-
Let r be the inner radius and R be the outer radius of the hemispherical dome.
Thickness of the metallic sheet = 1 cm
Inner Radius is 99 cm then the outer radius will be 99 cm + 1 cm = 100cm
Volume of the metallic sheet used = Outer volume of the dome - Inner volume of the dome
⇒ 2/3πr³ - 2/3πR³
⇒ 2/3*22/7*100*100*100 - 2/3*22/7*99*99*99
⇒ 44000000/21 - 42693156/21
⇒ 2095238.095 - 2033007.428
= 62230.667 cm³
So, volume of metallic sheet used is 62230.667 cm³
Answer.
Let r be the inner radius and R be the outer radius of the hemispherical dome.
Thickness of the metallic sheet = 1 cm
Inner Radius is 99 cm then the outer radius will be 99 cm + 1 cm = 100cm
Volume of the metallic sheet used = Outer volume of the dome - Inner volume of the dome
⇒ 2/3πr³ - 2/3πR³
⇒ 2/3*22/7*100*100*100 - 2/3*22/7*99*99*99
⇒ 44000000/21 - 42693156/21
⇒ 2095238.095 - 2033007.428
= 62230.667 cm³
So, volume of metallic sheet used is 62230.667 cm³
Answer.
Similar questions