A hemispherical tank is made up of an iron sheet 1 cm thick. Ifthe inner radius is 1 m, then find the volume of the iron used to make the tank.
Answers
Answered by
20
Hello!
• Inner radius, r =![\bf\small{1 \:m} \bf\small{1 \:m}](https://tex.z-dn.net/?f=%5Cbf%5Csmall%7B1+%5C%3Am%7D)
• Outer radius, R =![\bf\small{1.01 \:m} \bf\small{1.01 \:m}](https://tex.z-dn.net/?f=%5Cbf%5Csmall%7B1.01+%5C%3Am%7D)
Then,
:
![\sf \dfrac{2}{3}πr^{3}(R^{3}-r^{3}) \\ \\ \implies \dfrac{2}{3} \times \dfrac{22}{7} \times [(1.01)^{3}-(1)^{3}] \implies \boxed{\red{\bf{0.006348\:m^{3}}}} \sf \dfrac{2}{3}πr^{3}(R^{3}-r^{3}) \\ \\ \implies \dfrac{2}{3} \times \dfrac{22}{7} \times [(1.01)^{3}-(1)^{3}] \implies \boxed{\red{\bf{0.006348\:m^{3}}}}](https://tex.z-dn.net/?f=%5Csf+%5Cdfrac%7B2%7D%7B3%7D%CF%80r%5E%7B3%7D%28R%5E%7B3%7D-r%5E%7B3%7D%29+%5C%5C+%5C%5C+%5Cimplies+%5Cdfrac%7B2%7D%7B3%7D+%5Ctimes+%5Cdfrac%7B22%7D%7B7%7D+%5Ctimes+%5B%281.01%29%5E%7B3%7D-%281%29%5E%7B3%7D%5D+%5Cimplies+%5Cboxed%7B%5Cred%7B%5Cbf%7B0.006348%5C%3Am%5E%7B3%7D%7D%7D%7D)
Cheers!
• Inner radius, r =
• Outer radius, R =
Then,
Cheers!
Answered by
5
⇒ Answer :- 0.063487 cm^3
⇒ Given :-
Inner radius = 1 m
Iron sheet is 1 cm Thick
⇒ Solution :-
Let outer radius be R = Inner radius + thickness of iron sheet
= 101 cm
Inner radius be r = 1m = 100 cm
∴ Volume of the iron = (⅔)×(22/7)× (R^3-r^3)
(2/3)×(22/7)×(101^3-100^3)
44/21×30301 cm^3
63487.80952 cm^3
0.063487 cm^3
Similar questions
Math,
8 months ago
English,
8 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago