Physics, asked by ankuprajapati2000, 5 months ago

A hollow cast-iron cylinder 4m long, 300mm outer diameter, and thickness of metal 50mm is subjected to a central load on the top when standing straight. The stress produced is 75000kN/m2. Assume Young's modulus for cast iron as 1.5x 108 kN/m^2 and find (i) magnitude of the load, (ii) longitudinal strain produced, and (iii) total decrease in length. ​

Answers

Answered by DARLO20
12

\Large\bf{\color{indigo}GiVeN,} \\

A hollow cast-iron cylinder,

  • Length (L) = 4 m

  • Outer diameter (D) = 300 mm = 0.3m

  • Thickness of metal (t) = 50 mm = 0.05m

  • Stress \bf{(\sigma)}\:=\:75000\:k.N/m^2\:

  • Young's modulus for cast iron (E) = \bf{1.5\times{10^8}\:k.N/m^2\:} \\

\Large\bf{\color{cyan}To\:FiNd,} \\

  1. Magnitude of the load.
  2. Longitudinal strain.
  3. Total decrease in length.

\Large\bf{\color{coral}CaLcUlAtIoN,} \\

\red\checkmark\:\:\bf{Diameter\:of\:the\:cylinder\:=\:D\:-\:2t\:} \\

:\longmapsto\:\:\bf{Diameter\:of\:the\:cylinder\:=\:0.3\:-\:(2\times{0.05})\:} \\

:\longmapsto\:\:\bf{Diameter\:of\:the\:cylinder\:=\:0.3\:-\:0.1\:} \\

:\longmapsto\:\:\bf\blue{Diameter\:of\:the\:cylinder\:=\:0.2\:m} \\

(i) Magnitude of the load (Force) ;-

\bf\pink{We\:know\:that,} \\

\red\bigstar\:\:\bf\orange{Stress\:(\sigma)\:=\:\dfrac{Force}{Area\:of\:cross\:section}\:} \\

\longmapsto\:\:\bf{Force\:=\:\sigma\times {Area\:of\:cross\:section}\:} \\

\longmapsto\:\:\bf{Force\:=\:\sigma\times{\dfrac{\pi}{4}}\:(D^2\:-\:d^2)\:} \\

\longmapsto\:\:\bf{Force\:=\:75000\times{\dfrac{\frac{22}{7}}{4}}\:\Big(\:(0.3)^2\:-\:(0.2)^2\:\Big)\:} \\

\longmapsto\:\:\bf{Force\:=\:75000\times{\dfrac{22}{28}}\:\Big(\:0.09\:-\:0.04\:\Big)\:} \\

\longmapsto\:\:\bf{Force\:=\:75000\times{\dfrac{22}{28}}\times{0.05}\:} \\

\longmapsto\:\:\bf{Force\:=\:\dfrac{82500}{28}\:} \\

\longmapsto\:\:\bf\blue{Magnitude\:of\:the\:load\:=\:2946.4\:k.N\:} \\

(ii) Longitudinal Strain ;-

\bf\red{We\:know\:that,} \\

\orange\bigstar\:\:\bf\purple{Young's\:modulus\:(E)\:=\:\dfrac{Stress\:(\sigma)}{Strain\:(e)}\:} \\

\longmapsto\:\:\bf{e\:=\:\dfrac{\sigma}{E}\:} \\

\longmapsto\:\:\bf{e\:=\:\dfrac{75000}{1.5\times{10^8}}\:} \\

\longmapsto\:\:\bf{e\:=\:\dfrac{750000}{15}\times{10^{-8}}\:} \\

\longmapsto\:\:\bf{e\:=\:50000\times{10^{-8}}\:} \\

\longmapsto\:\:\bf{\color{darkkhaki}Longitudinal\:strain\:=\:0.0005\:} \\

(iii) Total decrease in length (dl) ;-

\bf\blue{We\:know\:that,} \\

\green\bigstar\:\:\bf\pink{Strain\:(\sigma)\:=\:\dfrac{Change\:in\:length}{Original\:length}\:} \\

\longmapsto\:\:\bf{Change\:in\:length\:(dl)\:=\:Strain\times {Original\:length}\:} \\

\longmapsto\:\:\bf{Change\:in\:length\:(dl)\:=\:0.0005\times {4}\:} \\

\longmapsto\:\:\bf\orange{Change\:in\:length\:(dl)\:=\:0.002\:m\:} \\

\longmapsto\:\:\bf\green{Change\:in\:length\:(dl)\:=\:2\:mm\:} \\

Similar questions