Math, asked by SingleMingleI, 3 months ago

A hollow cylindrical pipe is 21 dm long. its outer and inner diameter are 10 cm and 6 cm respectively. find the volume of the copper used in making the pipe.​

Answers

Answered by thebrainlykapil
26

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • A hollow cylindrical pipe is 21 dm long. its outer and inner diameter are 10 cm and 6 cm respectively. find the volume of the copper used in making the pipe.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Height of the Cyclindrical Pipe = 21dm
  • External Diameter = 10cm
  • Internal Diameter = 6cm

 \\

\large\underline{ \underline{ \sf \maltese{ \: </strong><strong>To </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>Find</strong><strong>:- }}}

  • The Volume of the Copper used in making the Pipe.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\underbrace\red{\boxed{ \sf \blue{ 1dm \: = \: 10cm }}}

Height of the Cyclindrical Pipe = 21dm

\qquad \quad {:} \longrightarrow \sf{\sf{21 \: \times \: 10cm  }}\\

\quad {:} \longrightarrow \sf{\bf{Height  \: of  \: the  \: Cyclindrical  \: Pipe\: = \: 210cm  }}\\

\underbrace\red{\boxed{ \sf \blue{  \frac{Diameter}{2}   \:  =  \: radius }}}

External Diameter = 10cm

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{10}{2}   \:  =  \: radius  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{\cancel\frac{10}{2}   \:  =  \: radius  }}\\

\quad {:} \longrightarrow \sf{\bf{External \: Radius \: = \: 5cm  }}\\

Internal Diameter = 6cm

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{6}{2}   \:  =  \: radius  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{\cancel\frac{6}{2}   \:  =  \: radius  }}\\

\quad {:} \longrightarrow \sf{\bf{Internal \: Radius \: = \: 6cm  }}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

\underbrace\red{\boxed{ \sf \blue{ Volume \: of \: Copper\: used \: in \: making \: Pipe }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume \: of \: Copper \: = \: \pi \: ( {(R)}^{2}  \:  -  \:  {(r)}^{2}  \: ) \:  \times  \: Height   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: Copper \: = \:  \frac{22}{7} \: ( {(5)}^{2}  \:  -  \:  {(3)}^{2}  \: ) \:  \times  \: 210   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: Copper \: = \:  \frac{22}{7} \: ( {(5)}^{2}  \:  -  \:  {(3)}^{2}  \: ) \:  \times  \: 210   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: Copper \: = \:  \frac{22}{\cancel7} \: ( 25  \:  -  \: 9  \: ) \:  \times  \: \cancel{210 }  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: Copper \: = \:  22 \:  \times( 25  \:  -  \: 9)  \:  \:  \times  \: 30 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: Copper \: = \:  22 \:  \times \: 16  \:  \:  \times  \: 30 }}\\

\qquad \quad {:} \longrightarrow \sf{\bf{Volume \: of \: Copper \: = \:  10560{cm}^{3} }}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{  Volume \: of \: Copper\: used \: in \: making \: pipe \: = \underline {\underline{ 10560{cm}^{3}}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions