A hollow sphere has radius 6.4 m. what is the minimum velocity required by a motor
cyclist at bottom to complete the circle.
Answers
Answered by
81
Answer:
17.7 m/s
Explanation:
At the top of the sphere, mv²/r = mg
⇒ v² = rg, at this point,
Total energy = KE + PE
= 1/2 (mv²) + (mg(2r))
= 1/2 (mrg) + 2mgr
Total energy would never change, so at the bottom, where potential energy is 0, let the velocity be u.
⇒ total energy = KE
⇒ 1/2 (mrg) + 2mgr = 1/2 mu²
⇒ 5mrg = mu²
⇒ √5rg = u
⇒ √(5 x 6.4 x 9.8) = u
⇒ 17.7 m/s = u
Answered by
72
A hollow sphere has radius 6.4m. Minimum velocity required by a motor cyclist at bottom to complete the circle will be?
We know that from conservation of energy:
Where,
- = Initial kinetic energy
- = Final kinetic energy
- = Initial potential energy
- = Final potential energy
Note:
- Initial potential energy= 0
- Height = 2R
Similar questions
History,
1 month ago
Math,
1 month ago
Chemistry,
3 months ago
Computer Science,
3 months ago
Math,
10 months ago