Math, asked by Beau14, 5 months ago

A hollow spherical shell is made of a metal of density 4.5 gm per cubic cm. If it’s

external and internal radii are 9 cm and 8 cm respectively, find the weight of the

shell​

Answers

Answered by Anonymous
67

 {\underline {\sf \blue{  Question }}}

  • A hollow spherical shell is made of a metal of density 4.5 gm per cubic cm. If it’s external and internal radii are 9 cm and 8 cm respectively, find the weight of the shell.

{\underline {\sf {\orange{Answer}}}}

  • The weight of spherical shell = 4.092kg
  • The volume of spherical shell = 909.33

{\underline {\sf \green{Given}}}

  • Density of hollow spherical shell is 4.5 gm per cubic cm.
  • Internal radii = 8cm
  • External radii = 9cm

{\underline {\sf \purple{To \:  Calcutate}}}

  • The weight of the shell.

{\underline {\sf \orange{Explanation}}}

Let the internal radii of spherical shell be R = 9cm

Let the external radii of spherical shell be r = 8cm

{\underline {\sf \green{According \:  to \:  the \:  question}}}

Case I

 \sf Volume  \: of  \: spherical  \: shell \:  v =  \frac{4}{3}  \pi (  {R}^{3}  \times  {r}^{3} )

 \sf  Volume =  \frac{4}{3}  \times  \frac{22}{7} ( {9}^{3}  \times  {8}^{3} )

Then,

 \implies \:   \sf\frac{8 \times 22}{3 \times 7} (729 - 512)

 \implies \:  \sf  \frac{88}{21}  \times 217

Now,

 \implies  \sf \:  \frac{19096}{21}

 \implies \sf \: 909.33

Case II

Weight of 1 cubic cm = 4.5gm

So,

The weight of spherical shell = 4.5 × 909.33

Weight of spherical shell = 4092 grams/4.092kg

{\underline {\sf \red{ Hence }}}

  • The weight of spherical shell = 4092 grams/4.092kg
Answered by Anonymous
2

Question:-

  1. A hollow spherical shell is made of a metal of density 4.5 gm per cubic cm. If it’s  external and internal radii are 9 cm and 8 cm respectively, find the weight of the  shell?​

To find,

  • The weight of the shell

Given that:-

  • Density = 4.5 gm
  • External radii = 9 cm
  • Internal radii = 8cm

Solution:-

Internal radius = 8cm

External radius = 9cm

Volume = external - internal                     \rm V =\dfrac{4}{3}\pi r^{2}

\rm =>\dfrac{4}{3}\pi (4)^{3}-\dfrac{4}{3}\pi (8)^{3}

\rm => \dfrac{4}{3}\pi  \:( 9^{3}-8^{3})=\dfrac{4}{3}\pi (729-512)

\rm => \dfrac{4}{3} \times \pi \times 217=908.96 \: cm^{3}(\pi =3.14)

\rm =>\dfrac{4}{3} \times \dfrac{22}{7} \times 217

\rm => 909.33 \: or \: (\dfrac{2728}{3})cm^{3}

\rm => M = V \times D=\dfrac{2728}{3} \times 4.5

                       = 4092 g

4092 when converted into kg is 4.092 kg

Similar questions