Physics, asked by Anonymous, 8 months ago

A horizontal force of 1 N is required to move a metal plate of area \sf 10^{-2} m² with a velocity of \sf 2 \times 10^{-2} m/s, when it rests on a layer of oil \sf 1.5 \times 10^{-3} m thick. Find the coefficient of viscosity of oil.​

Answers

Answered by BrainlyIAS
15

Answer

  • Coefficient of viscosity of oil = 7.5

Given

  • A horizontal force of 1 N is required to move a metal plate of area  10⁻² m² with a velocity of  2 * 10⁻² m/s, when it rests on a layer of oil  1.5 * 10⁻³ m thick

To Find

  • Coefficient of viscosity of oil

Formula Used

\bf F=\eta A\dfrac{dv}{dx}\\

where ,

F denotes force

η denotes coefficient of viscosity

A denotes area

dv denotes velocity

dx denotes thickness

Solution

\bf F=\eta A\dfrac{dv}{dx}\\\\\implies 1=\eta \times 10^{-2}\times \dfrac{2 \times 10^{-2}}{1.5 \times 10^{-3}}\\\\ \implies \bf \eta = \dfrac{1.5 \times 10^{-3}}{2 \times 10^{-4}}\\\\\implies \bf \eta = \dfrac{1.5 \times 10}{2}\\\\\implies \bf \eta =\dfrac{15}{2}\\\\\implies \bf \eta =7.5

So , Coefficient of viscosity of oil , η = 7.5

Answered by Anonymous
14

GiveN :

  • Force (F) = 1 N
  • Area (A) = \sf{10^{-2} \: m^2}
  • Velocity (V) = \sf{2 \: \times \: 10^{-2} \: ms^{-1}}
  • Thickness (x) = \sf{1.5 \: \times \: 10^{-3} \: m}

To FinD :

  • Coefficient of Viscosity \sf{(\eta)}

SolutioN :

Use Newton's Law of Viscosity :

\longrightarrow {\boxed{\sf{F \: = \: \eta A \dfrac{dv}{dx}}}} \\ \\ \longrightarrow \sf{1 \: = \: \eta \: \times \: 10^{-2} \bigg\lgroup \dfrac{2 \: \times \: 10^{-2}}{1.5 \: \times \: 10^{-3}} \bigg\rgroup} \\ \\ \longrightarrow \sf{1 \: = \: \eta \: \times \: 10^{-2} \bigg( 1.33 \: \times \: 10^{-2 \: + \: 3} \bigg)} \\ \\ \longrightarrow \sf{1 \: = \: \eta \: \times \: 10^{-2} \: \times \: 1.33 \: \times \: 10^1} \\ \\ \longrightarrow \sf{1 \: = \: \eta \: \times \: 1.33 \: \times \: 10^{-2 \: + \: 1}} \\ \\ \longrightarrow \sf{1 \: = \: \eta \: \times \: 1.33 \: \times \: 10^{-1}} \\ \\ \longrightarrow \sf{\eta \: = \: \dfrac{1}{1.33 \: \times \: 10^{-1}}} \\ \\ \longrightarrow \sf{\eta \: = \: 0.75 \: \times \: 10} \\ \\ \longrightarrow \sf{\eta \: = \: 7.5 \: poise \: (approx.)}

Similar questions