Physics, asked by aaravshrivastwa, 5 months ago

A horizontal smooth rod AB rotates with a constant angular velocity w = 2.00 rad/s about a vertical axis passing through its end A. A freely sliding sleeve of mass m = 0.50 Kg moves along the rod from the point A with the initial velocity u = 1.00 ms-¹. Find the Cariolis Force acting on the sleeve (in the reference frame fixed to the rotating rod) at the moment when the sleeve is located at the distance r = 50 cm from the horizontal axis.


Thanks.​

Answers

Answered by amulyaphule25
8

Answer:

The sleeve is free to slide along the rod AB. Thus only the centrifugal force acts on it. The equation is,

mv˙=mω2r where v=dtdr.

But v˙=vdrdv=drd(21v2)

so, 21v2=21ω2r2+constant

or, v2=v02+ω2r2

v0 being the initial velocity when r=0. The Corialis force is then,

2mωv02+ω2r2=2mω2r1+(ωrv0)2

=2.83N on putting the values.

Answered by shadowsabers03
35

Only the centripetal acceleration, as acceleration, is acting on the sleeve and is given by,

\sf{\longrightarrow a=\omega^2r}

or,

\sf{\longrightarrow \dfrac{dv}{dt}=\omega^2r}

By chain rule,

\sf{\longrightarrow \dfrac{dv}{dr}\cdot\dfrac{dr}{dt}=\omega^2r}

Since \sf{\dfrac{dr}{dt}=v,}

\sf{\longrightarrow v\,\dfrac{dv}{dr}=\omega^2r}

\sf{\longrightarrow v\,dv=\omega^2r\ dr}

Integrating,

\displaystyle\sf{\longrightarrow\int\limits_u^vv\,dv=\omega^2\int\limits_0^rr\ dr}

\displaystyle\sf{\longrightarrow\dfrac{v^2-u^2}{2}=\dfrac{\omega^2r^2}{2}}

\displaystyle\sf{\longrightarrow v=\sqrt{u^2+\omega^2r^2}}

Now, coriolis force is given by,

\sf{\longrightarrow F=2m\omega v}

\sf{\longrightarrow F=2m\omega\sqrt{u^2+\omega^2r^2}}

In the question,

  • \sf{m=0.5\ kg}
  • \sf{\omega=2\ rad\,s^{-1}}
  • \sf{u=1\ m\,s^{-1}}
  • \sf{r=0.5\ m}

Hence,

\sf{\longrightarrow F=2m\omega\sqrt{u^2+\omega^2r^2}}

\sf{\longrightarrow F=2\times0.5\times2\sqrt{1^2+2^2(0.5)^2}}

\sf{\longrightarrow\underline{\underline{F=2\sqrt{2}\ N}}}


Anonymous: Superb, Excellent ✌
Anonymous: good one.!
vikasbhuria21820071: ok beta
assingh: Perfect answer! : )
Mister360: Fabulous
ItzGullyBoy: bole toh ekdum mast answer derela hai biddu
ItzGullyBoy: mere traph se answer verified
Asterinn: Great !
Anonymous: should be verified!
Anonymous: superb
Similar questions