Physics, asked by kiraya, 6 months ago

A horizontal wire 0.1 m long carries a current of 5A from left to right. Find the magnitude and direction of the magnetic field, which support the weight of the wire. Assume wore to be of mass 3 ×10^-3 Kg m^-1.​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
10

Answer:-

\pink{\bigstar} The magnitude of the magnetic field is \large\leadsto\boxed{\tt\blue{5.88 \times 10^{-3} \: T}}

\pink{\bigstar} The direction of the magnetic field is horizontally perpendicular to the wire.

Given:-

  • Horizontal wire of 0.1 m length carries current of 5A from left to right.

  • Mass of the wire = 3 × 10-³ kg m-¹ .

To Find:-

  • The magnitude and direction of the magnetic field which supports the weight of the wire.

Solution:-

Here,

  • \sf I = 5 A

  • \sf l = 0.1 \: m

  • \sf m = 3 \times 10^{-3} kg.m^{-1}

The weight of the wire will be:-

\sf mg = 3 \times 10^{-3} \times 0.1 \times 9.8

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf mg = 0.3 \times 10^{-3} \times 9.8

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf mg = 2.94 \times 10^{-3} \: N

The direction of the magnetic field will be horizontally perpendicular to the wire.

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Figure:-

\setlength{\unitlength}{2.4mm}\begin{picture}(10,10)\thicklines\put(0,0){\vector(0,2){10}}\put(0,0){\vector(0,-2){10}}\put(0,0){\line(2,0){10}}\put(0,0){\line(-2,0){10}}\put(-8,0){\vector(2,0){5}}\put(1,1){\large\bf $\vec{B}$}\put(2,8){\large\bf F (magnetic)}\put(-6,-2){\large\bf I}\put(1,-10){\large\bf mg}\end{picture}

We know,

\pink{\bigstar} \large\underline{\boxed{\bf\green{F = ILB}}}

where,

  • F = Magnetic force
  • I = Current
  • L = Length of wire
  • B = Magnetic field

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

In equilibrium,

  • F = mg

Hence,

Substituting in the Formula:-

\sf 2.94 \times 10^{-3} = 5 \times 0.1 \times B

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 2.94 \times 10^{-3} = 0.5 B

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf B = \dfrac{2.94 \times 10^{-3}}{0.5}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\bf\pink{B = 5.88 \times 10^{-3} \: T}}

Answered by tarracharan
0

Answer:

★ Magnetic field (B) ⇝ \boxed{\tt{\red{5.88 \times 10^{-3} \: T}}}

★ The direction of the magnetic field is horizontally perpendicular to the wire.

\:

Given :-

\sf{Here, I=5A;\ell =0.1m;}

Mass per unit length of the wire

\sf{m\:(for\:1\:meter)=3×10^{−3}kg}

\:

Solution :-

Therefore, weight of the wire,

\sf{mg=3×10^{−3}×0.1×9.8}

\sf{\:\:\:\:\:\:\:\:\:\:\:=2.94×10^{−3}N\:--(i)}

\:

Let B be the strength of the magnetic field applied.

\sf{F=BI\ell=B×5×0.1=0.5B\:--(ii)}

\:

In equilibrium, (using i and ii)

\sf{➪\:F=mg}

\sf{➪\:0.5B=2.94×10^{−3}}

\sf{➪\:B= \dfrac{2.94×10^{−3}}{0.5}}

\:\:\:\:\:\:\:\:\:= \bold{\red{  5.88×10^{−3} T}}

Similar questions