Math, asked by susanth23, 6 months ago

A horse is tethered to one corner of a square plot of side 42cm by 35cm long rope . Find the area it can graze and the area will be left ungrazed. ​

Answers

Answered by MaIeficent
5

Step-by-step explanation:

Diagram:- Refer the attachment

Solution:-

Area which the horse can graze = Area of sector APXQ.

\boxed{ \sf \: Area \: of \: the \: sector =  \dfrac{ \theta}{360^{ \circ }  } \times\pi {r}^{2} }

Here:-

θ = 90°

r = Length of rope = 35cm

Area of sector APXQ

 \sf=  \dfrac{ 90^{ \circ} }{360^{ \circ }  } \times \dfrac{22}{7}   \times 35 \times 35

 \sf=  \dfrac{1}{4  } \times 22  \times 5 \times 35

 \sf=  \dfrac{3850}{4  }

 \sf= 962.5m^2

\underline{\boxed{\sf \therefore Area \: it \: can \: graze = 962.5cm^2}}

Area of the square plot = 42 × 42 = 1764m²

Area which will be left ungrazed = Area of plot - Area it can graze.

= 1764 - 962.5

= 801.5m²

\underline{\boxed{\sf \therefore Area \: which \: will \: be \: left \: ungrazed = 801.5m^2}}

Attachments:
Answered by Anonymous
7

 \underline{\bf{Given:-}}

❏ Side of square plot = 42cm

❏ Length of rope = 35cm

 \underline{\bf{Find:-}}

❏ Area the horse can graze

❏ Area left ungrazed

 \underline{\bf{Diagram:-}}

Let, ABCD be a square field and horse is tethered to a point A

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{0.4mm}\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf A}\put(-0.5,4.2){\bf D}\put(4.2,4.2){\bf C}\put(4.2, - 0.5){\bf B} \qbezier(2.3,0)(2.121,2.121)(0,2.3) \put(1,1){\circle*{0.1}}\put(1,1.3){\circle*{0.1}}\put(1.4,1){\circle*{0.1}}\put(0.7,0.2){\circle*{0.1}}\put(0.2,1){\circle*{0.1}}\put(0.6,2){\circle*{0.1}}\put(0.2,2){\circle*{0.1}}\put(0.5,1.3){\circle*{0.1}}\put(0.1,0.2){\circle*{0.1}}\put(1.2,0.2){\circle*{0.1}}\put(1.6,0.2){\circle*{0.1}}\put(0.2,0.8){\circle*{0.1}}\put(0.6,0.7){\circle*{0.1}}  \put(2.1,-0.5){\bf E}\put(-0.5,2.1){\bf F} \put(4.3,2.2){\vector(0, 1){1.6}} \put(4.3,1.8){\vector(0, - 1){1.6}}\put(4.1,1.9){\bf 42m} \put(1.3, - 0.2){\vector(1,0){0.8}}\put(0.8, - 0.2){\vector(-1,0){0.8}}   \put(0.8, - 0.4){\bf 35m} \end{picture}

\underline{\bf{Solution:-}}

Here, horse can graze the dotted part only AEF

Now,

Area horse can graze = Quadrant of circle with Radius 35cm

we, know that

 \large{\underline{\boxed{\sf Area \: of \: quadrant \: of \: circle =  \dfrac{1}{4} \pi {r}^{2} }}}

where,

  • π = 22/7
  • r = 35cm

So,

 \dashrightarrow\sf Area \: horse \: can \: graze =  \dfrac{1}{4} \pi {r}^{2} \\  \\

 \dashrightarrow\sf Area \: horse \: can \: graze =  \dfrac{1}{4} \times  \dfrac{22}{7} \times  {(35)}^{2} \\  \\

 \dashrightarrow\sf Area \: horse \: can \: graze = \dfrac{22}{28} \times  {(35)}^{2} \\  \\

 \dashrightarrow\sf Area \: horse \: can \: graze = \dfrac{22}{28} \times 1225\\  \\

 \dashrightarrow\sf Area \: horse \: can \: graze = \dfrac{26950}{28}\\  \\

 \dashrightarrow\sf Area \: horse \: can \: graze = 962.5 {cm}^{2} \\  \\

 \purple{\small{\therefore\sf Area \: horse \: can \: graze = 962.5 {cm}^{2}}}\\  \\

 \huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

we, know that

 \large{\underline{\boxed{\sf Area \: of \: square= (side) \times (side)}}}

where,

  • side = 42cm

So,

 \mapsto \sf Area \: of \: square \: plot= (side) \times (side) \\  \\

 \mapsto \sf Area \: of \: square \: plot= (42) \times (42) \\  \\

 \mapsto \sf Area \: of \: square \: plot= 1764 {cm}^{2} \\  \\

Now,

 \large{\underline{\boxed{\sf Area \: left \: ungrazed=Area \: of \: square \: plot - Area \: horse \: can \: graze}}}

where,

  • Area of square = 1764cm²
  • Area horse can graze = 962.5cm²

So,

 \leadsto\sf Area \: left \: ungrazed=Area \: of \: square \: plot - Area \: horse \: can \: graze \\  \\

 \leadsto\sf Area \: left \: ungrazed=1764-962.5 \\  \\

 \leadsto\sf Area \: left \: ungrazed=801.5 {cm}^{2} \\  \\

 \small{\therefore\sf Area \: left \: ungrazed=801.5 {cm}^{2}} \\  \\

\huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

Hence,

  • Area horse can graze = 962.5cm²
  • Area horse can not able to graze = 801.5cm²

Anonymous: Perfect :)
Similar questions