Physics, asked by Srumaha, 7 months ago

A horse starts from rest and accelerates at 3 m/s2

for 20 seconds; calculate

(i) The final velocity.

(ii) The distance travelled.​

Answers

Answered by prince5132
68

GIVEN :-

  • Initial velocity ( u ) = 0 m/s.
  • Acceleration ( a ) = 3 m/s².
  • Time taken , ( t ) = 20 s.

TO FIND :-

  • The Final velocity ( v ).
  • Distance travelled ( s ).

SOLUTION :-

By using the first equation of motion,

v = u + at.

Where,

  • v stands for Final velocity
  • u stand for Initial velocity
  • t stands for Time
  • a stands for Acceleration

On Substituting the values we get,

→ v = 0 + 3 × 20

→ v = 0 + 60

→ v = 60 m/s.

.°. The final velocity is 60 m/s.

By using the second equation of motion,

s = ut + ½ at².

  • s stands for Distance travelled.

On substituting the values we get,

→ s = 0 × 30 + ½ × 3 × (20)²

→ s = 0 + ½ × 3 × 400

→ s = 0 + ½ × 1200

→ s = 0 + 600

→ s = 600 m.

.°. The distance travelled is 600 m.

_______________________________

Newton's first equation of motion :

  • v = u + at

Newton's second equation of motion :

  • s = ut + ½ at²

Newton's third equation of motion :

  • v² = u² + 2as
Answered by Anonymous
41

\Large\purple{\mathcal{GIVEN}}   \large{\pink{\begin{cases} \red{\mapsto \sf  Acceleration, a = {3m/s}^2 } \\  \\  \\ \orange{\mapsto \sf  Time, t = 20sec } \end{cases}}}

\Large\purple{\mathcal{Find}}   \large{\red{\begin{cases} \pink{\mapsto \sf  Final \: Velocity, v } \\  \\  \\ \blue{\mapsto \sf  Distance \: Travelled, s } \end{cases}}}

\Large\purple{\mathcal{Solution}}

Here, horse starts from rest so,

it's initial Velocity, u = 0m/s

Now, we know that

 \underline{\boxed{ \sf v = u + at}} \qquad \quad \lgroup{ \sf {1}^{st} \: eq. \: of \: motion} \rgroup \\  \\

where,

  • Initial velocity, u = 0m/s
  • Acceleration, a = 3m/
  • Time, t = 20sec

So,

➤ v = u + at

➧ v = (0) + (3)(20)

➧ v = 0 + 60

➧ v = 60m/s

v = 60m/s \red\bigstar

____________________________

we, know that

\underline{\boxed{ \sf s = ut +  \dfrac{1}{2} a {t}^{2}}} \qquad \quad \lgroup{ \sf {2}^{nd} \: eq. \: of \: motion} \rgroup \\  \\

where,

  • Initial Velocity, u = 0m/s
  • Time, t = 20sec
  • Acceleration, a = 3m/

So,

⇒s = ut + \dfrac{1}{2} at²

\sf s = (0)(20) +  \dfrac{1}{2} \times (3) \times  {(20)}^{2}

\sf s = \dfrac{1}{2} \times (3) \times (400)

\sf s = \dfrac{1}{2} \times (1200)

\sf s = 600m

s = 600m \pink\bigstar

___________________________

Hence,

  • Final Velocity, u = 60m/s
  • Distance Travelled, s = 600m
Similar questions