Math, asked by halimaasna7983, 1 year ago

A hyperbola, having the transverse axis of length 2 sin θ, is confocal with the ellipse 3x² + 4y² = 12. Then its equation is
(a) x²cosec²θ – y²sec²θ = 1
(b) x²sec²θ – y²cosec²θ = 1
(c) x²sin²θ – y²cos²θ = 1
(d) x²cos²θ – y²sin²θ = 1

Answers

Answered by Ʀɑү
155

Answer:

  • x²cosec²θ – y²sec²θ = 1

Step-by-step explanation:

  \mathtt{The \:  length \:  of  \: transverse  \: axis \:  = 2sinθ =  \: 2a}

 \qquad \qquad \qquad  \implies \mathtt{a =  \frac{ \cancel2sinθ}{\cancel2} }\\  \\ \qquad \qquad \qquad  \implies \frak{a =  \sin \theta}</p><p>

 \tt \: also  \: \: for  \: \: ellipse \:  \: 3 {x}^{2}  +  {4y}^{2}  = 12

or,

  \tt\frac{ {x}^{2} }{4}  +  \frac{ {y}^{2} }{3}  = 1 \\  \tt \: where \:  {a}^{2}  = 4 \: and \:  {b}^{2}  = 3 \\  \\ e =  \sqrt{1 -  \frac{ {b}^{2} }{ {a}^{2} } }  =  \sqrt{1 -  \frac{3}{4} }  =  \frac{1}{2} \\  \\  \because \tt focus \: of \: ellipse \:  =  \bigg \lgroup2 \times  \frac{1}{2} ,0 \bigg \rgroup \\  \\  \:  \qquad \qquad \implies \: (1,0)

As hyperbola is confocal with ellipse, focus of hyperbola = (1,0)

 \implies \: ae = 1 \\ \implies \sin \theta \times e = 1 \\  \implies \: e =  \csc \theta \\  \\    \qquad \: \because \:  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1) \\  \\    \qquad  =  { \sin }^{2}  \theta(  { \csc }^{2}  \theta - 1) =  { \cos}^{2}  \theta

 \because \mathcal E \sf{quation \: of \: hyperbola \: is} \\  \\  \qquad  \qquad  \sf \: \frac{ {x}^{2} }{ { \sin }^{2} \theta  }  -  \frac{ {y}^{2} }{ { \cos }^{2} \theta }  = 1

 \qquad \qquad \bigg \lgroup \sf cosec \theta =  \frac{1}{ \sin \theta}  \\ \qquad \qquad \:  \qquad \sf sec \theta =  \frac{1}{ \cos \theta }  \bigg \rgroup

 \implies   \underline{\mathcal{\red{ {x}^{2}  { \csc }^{2}  \theta -  {y}^{2}  { \sec }^{2}  \theta } = 1}}

Answered by XxTaniyaxX
9

Answer:

(a) x²cosec²θ – y²sec²θ = 1

Similar questions