Physics, asked by faikaislam6374, 4 months ago

A=î, B=2î + K now what is the angle between A & B Vector?? I ans: 26.577° (explain how?)​

Answers

Answered by RISH4BH
50

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: Given :- }}}

\sf\implies Vector \ A \ = \ \hat{i} \\\sf\implies Vector \ B \ =\ 2\hat{i}+\hat{k} .

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: To \ Find  :- }}}

\implies\textsf{ The angle between A and B .}

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: Answer :- }}}

Here two vectors are given to us and we need to find the angle between them m.The vectors are A= î and B = 2î + \sf\hat{k} . We know dot product as |A||B| cosθ ( for vectors A & B ) so ,

\sf:\implies\pink{ \vec{A}. \vec{B}= |A| |B| \cos\theta }\\\\\sf:\implies cos\theta = \dfrac{ \vec{A}. \vec{B}}{|A| |B|}\\\\\sf:\implies cos\theta = \dfrac{ ( \hat{i} + 0\hat{j} + 0\hat{k})(2\hat{i} + 0\hat{j} + 1\hat{k})}{ (\sqrt{ 1^2 + 0^2+0^2})(\sqrt{ 2^2+0^2+1^2})} \\\\\sf:\implies cos\theta = \dfrac{ 1(2) + 0(0)+0(1)}{ (1)(\sqrt{5})} \\\\\sf:\implies cos\theta= \dfrac{ 2}{\sqrt5} \\\\\sf:\implies \boxed{\pink{\sf \theta = cos^{-1}\bigg(  \dfrac{ 2}{\sqrt5}\bigg) }}

\underline{\blue{\sf \therefore Hence \ the \ angle \ between\ them \  \ is \ \bf{\textsf{\textbf{cos}}^{-\textsf{\textbf{1}}}\dfrac{\textsf{\textbf{2}}}{\sqrt5} }. }}

Similar questions