Math, asked by tejaswinidas6971, 11 months ago

(a+ib) (1+I)=2+I .find a and b

Answers

Answered by risingstar10
4

Here's your solution!

Hope it's helpful

Attachments:
Answered by akshat72004
0

Answer:

a=\frac{3}{2} and b= \frac{-1}{2}

Step-by-step explanation:

(a+ib)(1+i)=2+i

a + ai + bi + bi^{2} = 2 + i

a + ai + bi +b(-1) = 2+ i

a + ai + bi - b = 2 + i

a - b + i(a + b) = 2 + i

a - b = 2    and   a + b = 1

Simultaneously equate:

a + b = 1

a - b = 2

 2b = -1

 b = \frac{-1}{2}

To find a, just replace the value with the variable(b):

a + \frac{-1}{2} = 1

a= \frac{1}{2} + 1

a = \frac{3}{2}  or 1.5.

                                 

Similar questions