a) If a+b+c=0 then show that a²(b+c)+b²(c+a)+c²(a+b)+3abc=0.
DONT SPAM ,AND PLEASE EXPLAIN THE ANSWER
Answers
Answered by
3
Step-by-step explanation:
a+b+c=0
a+b= -c
b+c = -a
c+a= -b
a²(b+c)+b²(c+a)+c²(a+b)+3abc
a²(-a) + b²(-b) + c²(-c) +3abc
-a³-b³-c³+3abc
Take - sign common
-(a³+b³+c³-3abc)
We know that a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
a+b+c=0(Given)
-(a³+b³+c³-3abc)=(0)(a²+b²+c²-ab-bc-ca)
a³+b³+c³-3abc=0
Please Mark this answer as the BRANIEST answer of this question
Similar questions