a) If alfa ,betta ,gama are the zeroes of the Polynomial
ax3+bx2 +cx+d, then the value of the 1/alfa +1/bett +1/gama is
Answers
EXPLANATION.
α, β, γ are the zeroes of the polynomial.
⇒ ax³ + bx² + cx + d.
As we know that,
Sum of zeroes of the cubic polynomial.
⇒ α + β + γ = -b/a.
Products of the zeroes of the cubic polynomial two at a time.
⇒ αβ + βγ + γα = c/a.
Products of the zeroes of the cubic polynomial.
⇒ αβγ = -d/a.
To find :
⇒ 1/α + 1/β + 1/γ.
⇒ βγ + αγ + αβ/αβγ.
Put the values in the equation, we get.
⇒ (c/a)/(-d/a).
⇒ c/a x a/-d. = -c/d.
⇒ 1/α + 1/β + 1/γ = -c/d.
MORE INFORMATION.
Conjugate roots.
(1) = If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
(2) = If D > 0.
One roots = α + √β.
Other roots = α - √β.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
★ Step by step explanation :
- Here, we have a cubic polynomial (ax³ + bx² + cx + d) whose zeroes are α,β,γ. We had to find out the value of 1/α + 1/β + 1/γ.
ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━
~Sum of zeroes (α+β+γ) = -b/a
~Product of zeroes two at a time (αβ + βγ + γα) = c/a
~Product of zeroes (αβγ) = -d/a
ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━
★ Finding value of 1/α + 1/β + 1/γ :
➲ㅤㅤㅤαβ + βγ+ γα/αβγ
★ Putting all known values :
➲ㅤㅤㅤc/a ÷ -d/a
➲ㅤㅤㅤc/a × a/-d
➲ㅤㅤㅤc/-d
•°• Value of 1/α + 1/β + 1/γ = c/-d
ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━
★ More to know :
- Formula for finding roots of a quadratic equation = (-b±(√b²-4ac)/(2a).
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬