) a) If sec A+tan A=P show that sin A = P2 -1
P2 +1
Answers
Given :
secA + tanA = p
To prove :
sinA = (p² - 1)/(p² + 1)
Proof :
We have ;
secA + tanA = p --------(1)
Also ,
We know that , sec²A - tan²A = 1
Now ,
=> sec²A - tan²A = 1
=> (secA - tanA)·(secA + tanA) = 1
=> (secA - tanA)·p = 1
=> secA - tanA = 1/p --------(2)
Now ,
Subtracting eq-(2) and (1) , we get ;
=> (secA + tanA) - (secA - tanA) = p - 1/p
=> secA + tanA - secA + tanA = p - 1/p
=> 2tanA = (p² - 1)/p
=> tanA = (p² - 1)/2p ---------(3)
Now ,
Adding eq-(1) and (2) , we get ;
=> (secA + tanA) + (secA - tanA) = p + 1/p
=> 2secA = (p² + 1)/p
=> secA = (p² + 1)/2p ------(4)
Now ,
Dividing eq-(3) by (4) , we get ;
=> tanA/secA = [(p² - 1)/2p] / [(p² + 1)/2p]
=> tanA/secA = [(p² - 1)/2p] × [2p/(p² + 1)]
=> (sinA/cosA) / (1/cosA) = (p² - 1)/(p² + 1)
=> (sinA/cosA) × cosA = (p² - 1)/(p² + 1)
=> sinA = (p² - 1)/(p² + 1)