A
Ignition temperature
Yellow flame
Wood
Carbon dioxide
Insufficient air
partial combustion
fire extinguisher
incomplete Combustion
non -luminous
mflammable substances
Answers
Answer:
❶ No. of tiles in 100cm and 144cm \large\leadsto\boxed{\tt\purple{240 \: tiles}}⇝240tiles
❷ No. of tiles in 70cm and 36cm \large\leadsto\boxed{\tt\pink{42 \: tiles}}⇝42tiles
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• GIVEN:-
Dimension of tiles is 5cm and 12cm
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• To Find:-
Number of tiles needed to fit in region of
100cm and 144cm
70cm and 36cm
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• Solution:-
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
1.)
Given that,
Length of the tiles = 5cm
Length of the tiles = 5cmBreadth of the tiles = 12cm
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
\mathrm{Therefore,}Therefore,
\large\underline{\boxed{\bf\green{Area = length \times breadth}}}Area=length×breadth
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf Area = 12 \times 5Area=12×5Area=12×5Area=12×5
★ \bf\red{Area = 60 \: cm^2}Area=60cm2
Also,
Length of the rectangular region = 100cm
Length of the rectangular region = 100cmBreadth of the rectangular region = 144cm
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
\mathrm{Therefore,}Therefore,
\large\underline{\boxed{\bf\green{Area = length \times breadth}}}Area=length×breadth
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf Area = 100 \times 144Area=100×144Area=100×144Area=100×144
★ \bf\red{Area = 14400 \: cm^2}Area=14400cm2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
\mathrm{Hence,}Hence,
The tiles required to fit in the given region will be,
No. of tiles = Area of the region / Area of the one tile
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf No. \: of \: tiles = \dfrac{14400}{60}No.oftiles=6014400
★ \large{\bf\pink{No. \: of \: tiles = 240 \: tiles}}No.oftiles=240tiles
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
2.)
Length of the rectangular region = 70cm
Length of the rectangular region = 70cmBreadth of the rectangular region = 36cm
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
\large\underline{\boxed{\bf\green{Area = length \times breadth}}}Area=length×breadth
➪ \sf Area = 70 \times 36Area=70×36Area=70×36Area=70×36
★ \bf\red{Area = 2520 \: cm^2}[tex]⠀⠀⠀⠀⠀⠀⠀⠀ < /p > < p > < /p > < h3 > Now, < /h3 > < p > < /p > < p > < strong > We know the area of 1 tile = 60 cm² < /strong > < /p > < p > < /p > < p > < /p > < p > [tex]\red\mathmm{Therefore,}Area=2520cm2[tex]⠀⠀⠀⠀⠀⠀⠀⠀</p><p></p><h3>Now,</h3><p></p><p><strong>Weknowtheareaof1tile=60cm²</strong></p><p></p><p></p><p>[tex]\mathmmTherefore,
No. of tiles = Area of the region / Area of the one tile
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf No. \: of \: tiles = \dfrac{2520}{60}No.oftiles=602520
★ \large{\bf{\blue{No. \: of \: tiles = 42 \: tiles}}}No.oftiles=42tiles