A intersection B whole dash
Answers
Answered by
0
Answer:We have to prove that (A ∪ B)' = A' ∩ B'
Let x be an arbitrary element of (A ∪ B)'
⇒ x ∈ (A ∪ B)'
⇒ x ∉ A ∪ B
⇒ x ∉ A and x ∉ B
⇒ x ∈ A' and x ∈ B'
⇒ x ∈ (A' ∩ B')
Therefore, (A ∪ B)' ⊆ (A' ∩ B') ....................(1)
Now, to prove (A' ∩ B') ⊆ (A ∪ B)'
Let y be an arbitrary element of (A' ∩ B')
⇒ x ∈ (A' ∩ B')
⇒ x ∈ A' and x ∈ B'
⇒ x ∉ A and x ∉ B
⇒ x ∉ (A ∪ B)
⇒ x∈ (A ∪ B)'
Therefore, (A' ∩ B') ⊆ (A ∪ B)' ....................(2)
From equation (1) and (2), (A ∪ B)' = A' ∩ B'
Hence proved
Step-by-step explanation:
Similar questions
Math,
3 months ago
Math,
3 months ago
English,
7 months ago
Social Sciences,
7 months ago
Geography,
1 year ago
Hindi,
1 year ago
Social Sciences,
1 year ago