A is 60% more efficient than
b. in how many days will a and b together complete a piece of work if a alone can complete the work in 15 days
Answers
Answered by
9
A is 60% more efficient than B.
A can complete the work in 15 days.
In 1 day, A will work = 1/15
let B can finish the work alone in x days
In 1 day, B will work = 1/x
According to the question,
![\frac{ \frac{1}{15} - \frac{1}{x} }{ \frac{1}{x} } \times 100 = 60 \\ \\ \frac{ \frac{1}{15} - \frac{1}{x} }{ \frac{1}{x} } = \frac{6}{10} \frac{ \frac{1}{15} - \frac{1}{x} }{ \frac{1}{x} } \times 100 = 60 \\ \\ \frac{ \frac{1}{15} - \frac{1}{x} }{ \frac{1}{x} } = \frac{6}{10}](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Cfrac%7B1%7D%7B15%7D+-+%5Cfrac%7B1%7D%7Bx%7D+%7D%7B+%5Cfrac%7B1%7D%7Bx%7D+%7D+%5Ctimes+100+%3D+60+%5C%5C+%5C%5C+%5Cfrac%7B+%5Cfrac%7B1%7D%7B15%7D+-+%5Cfrac%7B1%7D%7Bx%7D+%7D%7B+%5Cfrac%7B1%7D%7Bx%7D+%7D+%3D+%5Cfrac%7B6%7D%7B10%7D+)
![10 \times (\frac{1}{15} - \frac{1}{x} )=6 \times \frac{1}{x} \\ \\ \frac{10}{15} - \frac{10}{x} = \frac{6}{x} 10 \times (\frac{1}{15} - \frac{1}{x} )=6 \times \frac{1}{x} \\ \\ \frac{10}{15} - \frac{10}{x} = \frac{6}{x}](https://tex.z-dn.net/?f=+10+%5Ctimes+%28%5Cfrac%7B1%7D%7B15%7D+-+%5Cfrac%7B1%7D%7Bx%7D+%29%3D6+%5Ctimes+%5Cfrac%7B1%7D%7Bx%7D+%5C%5C+%5C%5C+%5Cfrac%7B10%7D%7B15%7D+-+%5Cfrac%7B10%7D%7Bx%7D+%3D+%5Cfrac%7B6%7D%7Bx%7D+)
![\frac{10}{15} = \frac{10}{x} + \frac{6}{x} = \frac{16}{x} \\ \\ x = 16 \times \frac{15}{10} = 24 \: days \frac{10}{15} = \frac{10}{x} + \frac{6}{x} = \frac{16}{x} \\ \\ x = 16 \times \frac{15}{10} = 24 \: days](https://tex.z-dn.net/?f=%5Cfrac%7B10%7D%7B15%7D+%3D+%5Cfrac%7B10%7D%7Bx%7D+%2B+%5Cfrac%7B6%7D%7Bx%7D+%3D+%5Cfrac%7B16%7D%7Bx%7D+%5C%5C+%5C%5C+x+%3D+16+%5Ctimes+%5Cfrac%7B15%7D%7B10%7D+%3D+24+%5C%3A+days)
Thus, B alone can finish in 24 days
in 1 day, he will finish = 1/24
In 1 day, both will finish = 1/15 + 1/24 = 39/360
Number of days needed to finish it together = 360/39 = 120/13 days
They will need 120/13 days to finish it together.
A can complete the work in 15 days.
In 1 day, A will work = 1/15
let B can finish the work alone in x days
In 1 day, B will work = 1/x
According to the question,
Thus, B alone can finish in 24 days
in 1 day, he will finish = 1/24
In 1 day, both will finish = 1/15 + 1/24 = 39/360
Number of days needed to finish it together = 360/39 = 120/13 days
They will need 120/13 days to finish it together.
Similar questions