Math, asked by krishnaveeni16, 10 months ago

A is a square matrix and I is a identity matrix of the same order. if A^3=0. the inverse of matrix (I-A) is

Answers

Answered by yashwagh1234568910
3

Answer:

I do not hshsbjsnbdbdjdbddbd

Step-by-step explanation:

hsshshsbshhshsj

sssbsssssssssssj

sbsbssssshsssshshdbdhsj

snssbsbbsbbddjdhddd

sbsdsnsnsajj

babsbs

bsbsssjs

Answered by knjroopa
0

Step-by-step explanation:

  • Now if A is a square matrix then the type will be A mxm and I matrix will also be mxm since it is of same order.
  • So the question is to find the inverse of I – A. Given A^3 = 0
  •                            Now A^3 = 0
  •                             Or – A^3 = 0
  • Adding identity matrix I to both sides we get
  •                              I – A^3 = I
  • So we have the identity a^3 – b^3 = (a – b) (a^2 + ab + b^2)
  •                        So we can write this as
  •                               I^3 – A^3 = I
  •                        (I – A) (I^2 - IA + A^2) = I
  •                        (I – A) (I – A + A^2) = I------------1 (since identity matrix multiplied by any matrix will be that matrix)
  •     Now we know that AA^-1 = I
  •               Similarly (I – A) (I – A)^-1 = I ----------2
  • By comparing 1 and 2 we  get (I – A)^-1 = I – A + A^2

Reference link will be

https://brainly.in/question/14926742?

Similar questions