a is equal to root3-root2 /root3+ root2, equals to root3+root2/root3-root2 find a square +b square
Answers
Answered by
5
a= √3-√2/√3+√2
b = √3+√2/√3-√2
Here
a= √3-√2/√3+√2= (√3-√2)(√3-√2)/(√3+√2)(√3-√2) [Multiplying both numerator and denominator by √3-√2]
=> a = 3+2-2√6/3-2= 5-2√6
Similarly b= √3+√2/√3-√2
multiplying both numerator and denominator by √3+√2
= (√3+√2)(√3+√2)/ (√3-√2)(√3+√2)
= 3+2+2√6/ 3-2
= 5+2√6
so
a^2+b ^2= (5-2√6)^2+ (5+2√6)^2. (applying the identity (a+b)^2+(a-b) ^2= 2(a^2+b^2) ]
we have
2{(5)^2+ (2√6)^2}
= 2{25+24}
= 2{49}
= 98
hope it helps ✌
Answered by
1
Answer:
a= root3-root 2/ root3+root 2 after rationalizing , a= 5-(2root6)
b= root3+root 2/ root3-root 2 after rationalizing , a= 5+(2root6)
(a²+b²)=(a+b)²-2
[5-(2root6) + 5+(2root6)]²-2 (2root6 and -2root6 is cancelled )
10^2-2
100-2
98 ANSWER
PLS MARK BRAINLIEST
Similar questions