Math, asked by Knightwarrior1, 1 year ago

A is equals to root 3 minus root 2 upon root 3 + root 2 b is equals to root 3 + root 2 upon root 3 minus root 2 find a square + b square minus 5 a b

Answers

Answered by abdulraziq1534
7

Concept Introduction:-

It may be in the form of a word, a symbol, or a figure that reflects the arithmetic value of a quantity.

Given Information:-

We have been given that a is equals to root 3 minus root 2 upon root 3 + root 2 b is equals to root 3 + root 2 upon root 3 minus root 2

To Find:-

We have to find that the value of a square + b square minus 5 a b

Solution:-

According to the problem

a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

$a b=\frac{(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})} \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})}$

$a b=1$

now

a=\frac{(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})}\\a=\frac{(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})} \frac{(\sqrt{3}-\sqrt{3})}{(\sqrt{2})}\\a=(\sqrt{3}-\sqrt{2})^{2}\\a=5-2 \sqrt{6}

b=\frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})}\\b=\frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})} \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})}\\b=(\sqrt{3}+\sqrt{2})^{2}\\a=5-2 \sqrt{6}\\b=\frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})}\\b=\frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})} \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})}\\b=(\sqrt{3}+\sqrt{2})^{2}\\b=5+2 \sqrt{6}\\a^{2}=49-20 \sqrt{6}\\b^{2}=49+20 \sqrt{6}\\

now

a^{2}+b^{2}-5 a b\\=93

Final Answer:-

The value of a square + b square minus 5 a b is 93.

#SPJ2

Similar questions