Physics, asked by masterrohit19, 1 month ago

A jeep travelling with a velocity of 108kmph is brought to rest by applying brakes. It experiences a uniform retardation of 3ms −2. Before coming to rest, it travels a distance of​

Answers

Answered by Anonymous
4

 \blue{Given,}

 \red✇  \green{\: A \: jeep \: travelling \: with \: a \: velocity \: of \: 108 \: km/h }

 \blue✇  \orange{\: It \: is \: brought \: to \: rest \: by \: applying \: brakes}

 \pink✇ \red{\: It \: experiences \: a \: uniform \: retardation \: of \: 3m/s² }

 \blue{To \: Find,}

 \orange{Distance \: travelled \: by \: Jeep  \: before \: coming \: to \: rest}

 \pink{Converting \: Initial \: Velocity \: in \: m/s }

 \green{Initial \: Velocity=108 \: km/h }

 \blue{= (108 \times  \frac{5}{18} ) \: m/s}

  \orange{= ( \frac{540}{18} ) \: m/s}

 \pink{Initial \: Velocity=30 \: m/s}

 \red{Calculating \: Required \: Distance,}

 \pink❍ \blue{ \: Initial \: Velocity = u = 30m/s}

 \orange❍ \green {\: Final \: Velocity = v = 0m/s}

 \blue❍ \pink{\: Acceleration = a =  - 3 m/ {s}^{2} }

 \red{Let \: time \: taken \: by \: Jeep \: to \: stop \: be = t \: second}

 \red★ \blue{\: We \: have \:  {1}^{st}  \: equation \: of \: motion \: as}

 \orange{v = u + at}

 \blue➲ \green{Putting \: values \: in \:  {1}^{st}  \: equation}

 \pink{0 = 30 + ( - 3) \times t}

 \red{ - 3t =  - 30}

 \orange{t =  \frac{30}{3} }

 \green{t = 10s}

{ \pink {\boxed {\red{t = 10s}}}}

 \pink★ \green{We \: have \:  {2}^{nd}  \: equation \: of \: motion \: as}

s = \pink{ ut +  \frac{1}{2}  {at}^{2} }

 \red➲ \blue{Putting \: values \: in \:  {2}^{nd}  \: equation}

 \orange{s = 30 \times 10 +  \frac{1}{2}  \times ( - 3) \times  {10}^{2} }

 \red{s = 300 - 150}

{ \green {\boxed {\pink{s = 150m}}}}

 \blue{ Therefore,}

 \pink{Distance = 150m}

Similar questions