Physics, asked by kofzone70, 6 months ago


A jet airplane travelling at the speed of 400 km hı? ejects its products of combustion at the speed of
1200 km h relative to the jet plane. What is the speed of the latter with respect to an observer on the
ground?​

Answers

Answered by amitk68626
0

Answer:

800 km per hour............

Answered by HèrøSk
57

Question:-

A jet airplane travelling at the speed of 400 km\h ejects gases at a speed of 800km\h the speed of the gas relative to rocket is or (speed of latter by seen by a observer in the ground.)

Explanation:

Given,

\Large\vec{v}_{j}\:= \: 400\:Km\:h^{-1}

\Large\vec{v}_{cj}\:=\: -1200 \:Km\:h^{-1}h

( Note:- here velocity of cumbustion or gas in negative direction)

To Find :-

\vec{v}_{c}\:=\:?

Solution:-

\vec{v} _{cj} =\vec{v}_{c} - \vec{v}_{j} \\  - 1200 =\vec {v} _{c}  - 400 \\ - 1200 + 400 = \vec{v} _{c} \\ ➜\vec{v} _{c} =  - 800

Note:-

\vec{v}_{cj} is Velocity of cumbustion with respect to jet.

\vec{v}_{c} is Velocity of cumbustion respect to the ground which we are finding.

\vec{v}_{j} is Velocity of jet.

Velocity of cumbustion in 800 Km\h in opposite direction in plane.

The speed of gas is 800km\hr or latter

Or,

The speed observe by the observer is 800 Km\h.

Here, All statements are correct.

Similar questions