Math, asked by meetjain22, 11 months ago

A joker's cap is in the form of a right circular cone of base diameter 14 cm and height is 24cm. Find the area of the sheet required to make 11 such caps.​

Answers

Answered by BrainlyConqueror0901
33

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sheet\:required=6050\:cm^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Diameter \: of \: cone = 14 \: cm \\  \\  \tt:  \implies Height \: of \: cone = 24 \: cm \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Area \: of \: sheet \: require \: to \: make \: 11 \: cap =?

• According to given question :

 \tt \circ \: Radius  = 7 \: cm \\  \\  \tt \circ \: Height = 24 \: cm \\  \\   \tt \circ \: l =  \sqrt{ {r}^{2}  +  {h}^{2} } \\  \\   \tt:  \implies l =  \sqrt{ {7}^{2}  +  {24}^{2} }  \\  \\   \tt: \implies l =  \sqrt{49 +576 } \\  \\  \tt: \implies l =  \sqrt{625}  \\  \\  \tt:  \implies l = 25 \: cm   \\  \\  \bold{As \: we \: know \:that} \\  \tt:  \implies C.S.A\: of \: cone = \pi rl \\  \\ \tt:  \implies C.S.A \: of \: cone =  \frac{22}{7}  \times 7 \times 25 \\  \\ \tt:  \implies C.S.A \: of \: cone =22 \times 25 \\  \\  \green{\tt:  \implies C.S.A \: of \: cone =550 { \: cm}^{2} } \\  \\  \bold{For \: 11 \: caps : } \\  \tt: \implies Sheet \: required = 550 \times 11 \\  \\  \green{\tt: \implies Sheet \: required =6050 \:  {cm}^{2} }

Answered by Anonymous
46

\huge\sf{Answer:}

According to the given question:

⇏ A joker's cap is in the form of a right circular cone of base diameter 14 cm and height is 24cm.

Find:

⇏ Find the area of the sheet required to make 11 such caps.

Know terms:

⇏ Length = (L)

⇏ Radius = (r)

⇏ Height = (h)

⇏ Curved surface area = (CSA)

Using formula:

\sf L =  \sqrt{r^2 + h^2}

Calculations:

\sf L =  \sqrt{ 7^2 + 24^2}

\sf L =  \sqrt{49 + 576}

\sf L =  \sqrt{625}

\sf L = 25

So, 25 is the length.

Using formula:

\sf CSA \:  of \:  cylinder = πrl

Using the above formula in our equation, we get:

\sf CSA  =  \dfrac{22}{7}  \times 7 \times 25

\sf CSA  = (22 \times 25)

{\sf{\boxed{\sf{ CSA = 550 \:  cm^2}}}}

so, 550 cm² is the CSA of cone.

Finding the area of required sheet:

\sf 550 \times 11

{\sf{\boxed{\sf{6050 \: cm^2}}}}

Therefore, 6050 cm² is the required area of sheet to make 11 caps.

Similar questions