Math, asked by shyan3247, 1 month ago

A(k-3, k-2), B(k − 2, k − 3), and - - C(k+7, m) are 3 collinear points. Find the value of m in terms of k.​

Answers

Answered by senboni123456
1

Step-by-step explanation:

Given points are

 A\equiv (k-3,k-2)\: \: ; \:\: B\equiv(k-2,k-3)\:\: ;C\equiv(k+7,m)\\

Since they are collinear, so their slopes will be equal

So,

 m_{AB}=m_{AC}\\

 \implies \frac{(k - 3) - (k - 2)}{(k - 2) - (k - 3)}   =  \frac{m - (k - 2)}{(k + 7) - (k - 3)} \\

 \implies \frac{(k - 3) - (k - 2)}{  - \{ (k - 3) - (k - 2) \}}   =  \frac{m - k  +  2}{k + 7 - k  +  3} \\

 \implies  - 1  =  \frac{m - k  +  2}{k + 7 - k  +  3} \\

 \implies  - 1  =  \frac{m - k  +  2}{10} \\

 \implies  - 1 0 =  m - k  +  2\\

 \implies   m   = k - 12\\

Similar questions