Math, asked by binitasharma71, 3 months ago

" A kettle is sold at a profit equal to one-fourth of its cost price. Find the profit percentage."

Answers

Answered by alagappannagappan0
0

Answer:

25%

Step-by-step explanation:

1/4 of 100%

we cut 100 and 4

we put 1 in place of 4 and 25 in place of 100

1/1 X 25%

25%

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{Profit \:  =  \: \dfrac{1}{4}  \: Cost  \: Price}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{Profit \: \%}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Let Cost Price of Kettle be Rs '4x'.

It is given that Profit is one - fourth of its Cost Price

  • So, Profit = Rs x.

We know,

 \boxed{ \green{ \rm :  \implies \: Profit \: \% \:  = \:\dfrac{Profit}{Cost  \: Price}   \times  \: 100 \: \%}}

So,

 \rm :  \implies \:Profit \: \% \:  =  \: \dfrac{x}{4x}  \times 100 \: \%

 \boxed{ \pink{ \rm :  \implies \: Profit\%\:  =  \: 25\%}}

─━─━─━─━─━─━─━─━─━─━─━

Explore more :-

 \boxed{ \green{ \rm :  \implies \: \rm { Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%}\: }}

 \boxed{ \green{ \rm :  \implies \:\rm { Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \: }}

 \boxed{ \green{ \rm :  \implies \: \rm { S.P = \dfrac{100+Gain\%}{100} \times C.P}\: }}

 \boxed{ \green{ \rm :  \implies \: \rm { C.P =\dfrac{100}{100+Gain\%} \times S.P}\: }}

 \boxed{ \green{ \rm :  \implies \:\rm { S.P = \dfrac{100-loss\%}{100} \times C.P} \: }}

 \boxed{ \green{ \rm :  \implies \:\rm { C.P =\dfrac{100}{100-loss\%} \times S.P}</p><p> \: }}

Similar questions