Math, asked by gsingh48260, 9 hours ago


A kite is formed by adjoining two triangles of sides 20cm, 40cm and 40cm respectively. And third triangle is at the tail of sides 6cm, 6cm and 4cm. Find the total area of paper used in making this kite. ( Use √15 = 3.87 and √2 =1.41)​

Answers

Answered by pavni233
1

click this answer this is the answer of the question

Attachments:
Answered by RvChaudharY50
0

Solution :-

Sides of adjoining two triangles is a = 20 cm , b = 40 cm and c = 40 cm .

so,

→ semi perimeter = s = a + b + c/2 = (20 + 40 + 40) / 2 = 50 cm .

then,

→ Area of both ∆'s = 2[√{s * (s - a) * (s - b) * (s - c)}] = 2[√(50 * 30 * 10 * 10) = 2*10*10√15 = 200 * 3.87 = 774 cm²

and,

→ semi perimeter of third ∆ = (6 + 6 + 4)/2 = 8 cm

so,

→ Area of third ∆ = √(8 * 2 * 2 * 4) = 2 * 2 * 2 * √2 = 8√2 = 8 * 1.41 = 11.28 cm² .

then,

→ Total area of paper used in making kite = 774 + 11.28 = 785.28 cm² (Ans.)

Learn more :-

Diagonals AC and BD of quadrilateral ABCD meet at E. IF AE = 2 cm, BE = 5 cm, CE = 10 cm, 8 सेमी.

https://brainly.in/question/27312677

Let abcd be a rectangle. the perpendicular bisector of line segment bd intersect ab and bc in point e and f respectively...

https://brainly.in/question/27813873

Similar questions