A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
Answers
Answered by
0
Answer:
In ⊥ΔACB,∠C=90
In ⊥ΔACB,∠C=90 ∘
In ⊥ΔACB,∠C=90 ∘ ,BC=?
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8)
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10)
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB 2 =100−64
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB 2 =100−64CB
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB 2 =100−64CB 2
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB 2 =100−64CB 2 =36
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB 2 =100−64CB 2 =36∴CB=6
In ⊥ΔACB,∠C=90 ∘ ,BC=?AC 2 +CB 2 =AB 2 (8) 2 +CB 2 =(10) 2 64+CB 2 =100CB 2 =100−64CB 2 =36∴CB=6∴ Ladder is at a distance of 6m from the base of the wall.
Answered by
3
Answer:
Hope this helps you ✌️✌️
Attachments:
Similar questions