Math, asked by keerthisen1800, 6 months ago

A ladder 14 meter long rests a againsts a wall if the foot of the ladder is 7m from the wall then the angel of elevation of the ladder is

Answers

Answered by pandaXop
69

Angle = 60°

Step-by-step explanation:

Given:

  • Length of ladder is 14 meter.
  • Foot of ladder is at 7 m from foot of wall.

To Find:

  • Angle of elevation ?

Solution: Let angle of elevation be θ , AC be the window , BC be the ladder and AB be the distance between foot of ladder and window.

In ∆ABC we have

  • BC {hypotenuse} = 14

  • AB {base} = 7

  • AC {perpendicular}

  • ∠ABC = θ

As we know that

Cosθ = Base/Hypotenuse

➮ cos θ = AB/BC

➮ cos θ = 7/14

➮ cos θ = 1/2

➮ cos θ = 60°

  • { cos 60° = 1/2 or 1/2 = cos θ or 60° }

Hence, angle of elevation of the ladder is 60°.

Attachments:
Answered by Anonymous
80

Diagram :

\setlength{\unitlength}{20mm}\begin{picture}(6,2)\linethickness{0.4mm}\put(7.7,2.9){\large\sf{A}}\put(7.9,0.8){\large\sf{B}}\put(10.4,0.8){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.5,1.9){\sf{\large{ 7 m}}}\put(9,0.7){\sf{\large{ ? }}}\put(9.8,2.2){\sf{\large{14m}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\multiput(8.1,2.8)(.33,-.25){8}{\line(2,1){.3}}\qbezier(11,1)(10.5,1.4)(8.35,3)\end{picture}

</p><p>\green{\underline \bold{Given :}} \\ : \implies \text{Length\:of\: ladder= 14\: m} \\ \\ : \implies \text{Height\:of\:wall=7\:m}\\\\ \red{\underline \bold{To \: Find:}} \\ : \implies \text{Angle\:of\:elevation= ?} \\

Accroding to given question :

\bold{in \: \triangle \: ABC} \\ : \implies  \sf \: cos \: \theta = \frac{\text{Base}}{\text{Hypotenuse}} \\ \\ : \implies  \sf \: cos\: \theta= \frac{BC}{AC} \\ \\ : \implies  \sf \: cos\:\theta= \frac{7}{14} \\ \\ : \implies  \sf \: cos\:\theta= \frac{1 }{2} \\ \\ \green{ :   \sf \: \implies \theta = 60^{\circ} } \\

Similar questions