Math, asked by hpreetk20485gmailcom, 1 year ago

a ladder 15m long just reaches the to of vertical wall if the ladder makes an angle of 60° with the wall find the height of wall​

Answers

Answered by gayatrinov97
2

Answer:

12.99m

Step-by-step explanation:

Let the height of the wall be x m

ATQ, the ladder forms the hypoteneuse of the right triangle and the wall forms the perpendicular side and the given angle is 60° so,

sin60°=perpendicular/hypoteneuse

(substituting values)

√3/2=x/15

⇒x=15*√3/2=7.5*1.732=12.99m


hpreetk20485gmailcom: i think its not a ryt
Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:wall=7.5\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a ladder 15m long just reaches the to of vertical wall if the ladder makes an angle of 60° with the wall.

• We have to find the height of wall.

 \green{\underline \bold{Given :}} \\ : \implies \text{Length\:of\:ladder= 15\:m} \\ \\ : \implies \text{Angle\:of\:elevation=}30^{\circ}\\\\  \red{\underline \bold{To \: Find:}} \\ : \implies \text{Height\:of\:wall=  ?}

• Accroding to given question :

 \bold{In \:  \triangle \: ABC} \\   : \implies sin \:  \theta =  \frac{\text{Perpendicular}}{\text{Hypotenuse}}  \\  \\    : \implies sin\: 30^{\circ}=  \frac{AB}{AC}   \\  \\  : \implies  \frac{1}{2}=  \frac{AB}{15}  \\  \\  : \implies AB= \frac{15}{2}\ \\  \\  \green{ : \implies {AB=7.5\:m}}\\\\ \green{\therefore{\text{Height\:of\:wall=7.5\:m}}}

Similar questions