Geography, asked by mehramanvi01, 18 days ago

A ladder 17m long,reaches a window of a building 15m above the ground. Find the distance of the foot of the ladder from the building.
Hello everyone hru all ✨

Answers

Answered by muthumanimalothram
3

Answer:

Let AC be the ladder, AB be the wall.

Then in △ABC,

 {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}   (Pythagoras \:  theorem)

 {17}^{2}  =  {15}^{2}  +  {BC}^{2}

 {BC}^{2}  =  {8}^{2}

BC=8 m

Hence, the foot of the ladder is 8 m from the wall.

Explaination:

I hope it will help you

Drop some thx

And foll ow me plz

Thank you :)

Answered by Anonymous
12

Given : The ladder is 17 m long ,reaches a window of a building 15 m away above the ground .

 \\ \\

To Find : Find the Distance of foot of ladder from the buliding

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ { \bigg( Hypotenuse \bigg) }^{2} = { \bigg( Height \bigg) }^{2} + { \bigg( Base \bigg) }^{2} }}}}}

 \\ \\

 \dag Calculating the Distance :

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { {\bigg( Hypotenuse \bigg) }^{2} = { \bigg( Height \bigg) }^{2} + { \bigg( Base \bigg) }^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { { \bigg( 17 \bigg) }^{2} = { \bigg( 15 \bigg) }^{2} + { \bigg( Base \bigg) }^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { \sqrt{ { \bigg( 17 \bigg) }^{2} - { \bigg( 15 \bigg) }^{2} } = Base } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { \sqrt{280 - 225} = Base } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { \sqrt{64} = Base } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; {\underline{\boxed{\pmb{\sf { Base = 8 \; m }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Distance of the ladder from the Building is 8 m .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions