Math, asked by kshitijtayade3481, 10 months ago

A ladder 5 meter long, leans against a wall. It makes an angle of 60 degree with the horizontal ground. Calculate how far up the wall the ladder reaches

Answers

Answered by Anonymous
2

 \red{{ \bf GIVEN :}}

  • Height of ladder = 9 m
  • Angle of elevation = 60°

\bf </strong><strong> </strong><strong>\</strong><strong>b</strong><strong>l</strong><strong>u</strong><strong>e</strong><strong>{</strong><strong>To</strong><strong>  \:  Find :</strong><strong>}</strong><strong>

  • Height of leader reach

 \bf </strong><strong>\</strong><strong>o</strong><strong>r</strong><strong>a</strong><strong>n</strong><strong>g</strong><strong>e</strong><strong>{</strong><strong>Solution</strong><strong> :</strong><strong>}</strong><strong>

 \frac{p}{h}  =  \sin \theta \\  \\  \frac{9}{x}  =  \sin60 \degree \\  \\  \frac{9}{x}  =  \frac{ \sqrt{3} }{2}  \\  \\  \sqrt{3}x = 18 \\  \\ x =  \frac{18}{ \sqrt{3} } \\  \\  x =  \frac{18}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\ x =  \frac{ \cancel{18 }\sqrt{3} }{ \cancel3}  \\  \\ x = 6 \sqrt{3}  \\  \\ x = 6 \times 1.7 \\  \\  \bf x = 7.8 \: m

Ladder reach at a height of 7.8 m

Similar questions