Math, asked by ateebmudabbir72, 10 months ago


A ladder AB of 10 mts long moves with its ends on the axes. When the end A is 6 mts from
origin, it moves away from it at 2mts/minute. The rate of increase of the area of the OAB
sq.mts/min​

Answers

Answered by knjroopa
4

Step-by-step explanation:

Given  

A ladder AB of 10 mts long moves with its ends on the axes. When the end A is 6 mts from origin, it moves away from it at 2 mts/minute . The rate of increase of the area of the OAB  sq.mts/min​

  • We know that area of triangle = 1/2 x base x height
  •                       Triangle  OAB = 1/2 x OA. OB
  •                                            OA^2 + OB^2 = 10^2
  •                                 So        6^2 + OB^2 = 100
  •                                                 OB^2 = 100 – 36
  •                                                 OB^2 = 64
  •                                                 OB = 8
  • Now d / dt (OA) = 2 m / min
  • Also d/dt (OB) = OA / OB d(OA) / OB
  • Therefore d/dt AOAB = 1/2 OA d/dt (OB) + 1/2 OB d/dt (OA)
  •                      d/ dt (AO AB) = 1/2 (- 36/ 8 + 8) x 2
  •                                              = 1/2 (28 / 8) x 2
  •                                              = 28/8
  •                                               = 7/2
Similar questions