Math, asked by ialimohd, 1 year ago

A ladder is placed against a wall making an angle of 60 o with the floor and reaching a height of 45 feet. The  length of the ladder is ?

Answers

Answered by Anonymous
2

Hey mate ♥ here is ur answer :

Sin60= opposite / Hypotenuse

\sqrt{3} / 2 = 45/ height of ladder.

=> Height of ladder = 90\sqrt{3} feet

HOPE THIS ANSWER WILL HELP U

PLEASE MARK IT BRAINLIEST ❤️

Attachments:
Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Length\:of\:ladder=}30\sqrt{3}\:feet}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a ladder is placed against a wall making an angle of 60° with the floor and reaching a height of 45 feet.

• We have to find the length of ladder.

 \green{\underline \bold{Given :}} \\ : \implies \text{Height\:of\:wall= 45\: feet} \\ \\ : \implies \text{Angle\:of\:elevation=}60^{\circ}\\\\  \red{\underline \bold{To \: Find:}} \\ : \implies \text{Length\:of\:ladder=  ?}

• Accroding to given question :

 \bold{In \:  \triangle \: ABC} \\   : \implies sin \:  \theta =  \frac{\text{Perpendicular}}{\text{Hypotenuse}}  \\  \\    : \implies sin\: 60^{\circ}=  \frac{AB}{AC}   \\  \\  : \implies  \frac{\sqrt{3}}{2}=  \frac{45}{AC}  \\  \\  : \implies AC= \frac{45\times2}{\sqrt{3}} \ \\  \\  \green{ : \implies {AC=30\sqrt{3}\:feet}}

Similar questions