Math, asked by ps2774844, 6 months ago

A ladder is placed against a wall such that it just touches the top of the wall. the foot of latter is 10m away from the wall and the ladder is inclined at an angle 60° with the ground. find the height of the wall and length of the ladder. ​

Answers

Answered by Anonymous
3

Given : A ladder is placed against a wall such that it just touches the top of the wall. the foot of latter is 10m away from the wall and the ladder is inclined at an angle 60° with the ground

Answer:

\qquad\qquad\tiny\underline{\frak{ By \:  Using  \: trignometry  \: property \: we  \: get :}}  \\  \\

: \implies \sf  \tan( \theta) =  \dfrac{Perpendicular}{Base}  \\  \\  \\

: \implies \sf  \tan( \theta) =  \dfrac{AB}{BC}  \\  \\  \\

: \implies \sf  \tan(60) =  \dfrac{AB}{10}  \\  \\  \\

: \implies \sf   \dfrac{ \sqrt{3} }{1}  =  \dfrac{AB}{10}  \\  \\  \\

: \implies \sf  AB   = 10 \sqrt{3} \: m \\  \\  \\

: \implies \sf  AB   = 10 \times 1.732 \qquad\Bigg\lgroup \textsf{\textbf{Taking $\sqrt{3} $ = 1.732}}\Bigg\rgroup \: m \\  \\  \\

: \implies \underline{ \boxed{\sf  AB   = 17.32 \: meters}} \\  \\

\therefore\underline{\textsf{The height of the wall is \textbf{17.32 meters}}}.

____________________...

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} \bf Angles & \bf 0^{o} & \bf 30^{o} & \bf 45^{o} & \bf 60^{o} & \bf 90^{o} \\\cline{1-6} \tt Sin \theta & 0 & \dfrac{1}{2} & \dfrac{1}{\sqrt{2}}& \dfrac{\sqrt{3}}{2}& 1\\\cline{1-6} \tt cos \theta & 1 & \dfrac{\sqrt{3}}{2} &\dfrac{1}{\sqrt{2}}&\dfrac{1}{2}&0\\\cline{1-6} \tt tan \theta & 0 & \dfrac{1}{\sqrt{3}} & 1& \sqrt{3} & \infty \\\cline{1-6} \tt cosec \theta & \infty & 2 & \sqrt{2} & \dfrac{2}{\sqrt{3}} &1\\\cline{1-6} \tt sec \theta & 1 & \dfrac{2}{\sqrt{3}} & \sqrt{2} & 2 & \infty \\\cline{1-6} \tt cot \theta & \infty & \sqrt{3} &1& \dfrac{1}{\sqrt{3}} &0\\\cline{1-6}\end{array}

Attachments:
Similar questions