Math, asked by lolkumar345, 10 months ago

A ladder leaning against a wall makes an angle of 60° with the horizontal . If the foot of the ladder is 2.5 m away from the wall, find the length of the wall​

Answers

Answered by Anonymous
94

\rule{250}3

\large{\red{\underline{\tt{Diagram\::-}}}}

\setlength{\unitlength}{1.6cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{C}}\put(10.6,1){\large\sf{B}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(8.4,0.7){\sf{\large{2.5m}}}\put(7.4,2){\sf{\large{wall}}}\put(9.3,2){\sf{\large{ladder}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\put(9.4,1.2){\sf\large{60^{\circ}$}}\end{picture}

\rule{250}3

\large{\red{\underline{\tt{Given\::-}}}}

  • BC = 2.5 m

  • \tt \angle ABC = 60^{\circ}

\large{\red{\underline{\tt{To\:find\::-}}}}

Length of the wall.

\large{\red{\underline{\tt{Solution\::-}}}}

\dagger\:\:{\underline{\tt According\:to\: question\::-}}

\dashrightarrow \sf cos \:60^{\circ} = \dfrac{2.5}{l}

\\

\dashrightarrow \sf \dfrac{1}{2} = \dfrac{2.5}{l}

\\

\dashrightarrow \sf l = 2.5 \times 2

\\

\pink\dashrightarrow \large{\underline{\pink{\boxed{\sf l = 5 m}}}} \orange\bigstar

Hence, length of wall = 5 meter.

\rule{250}3

\bigstar\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined\end{tabular}}

\rule{250}3


BrainlyRaaz: Perfect ✔️
Answered by BrainlicaLDoll
67

 \large\bf\underline{Given:-}

  • A ladder leaning against a wall makes an angle of 60° with the horizontal.
  • The foot of the ladder is 2.5 m away from the wall.

 \large\bf\underline {To \: find:-}length of the wall( let it be L )

 \huge\bf\underline{Solution:-}

Let,

AB be the ladder and CA be the wall (Refer to attachment )

A/q

The ladder make an angle of 60° with horizontal.

∴ ΔABC is a 30°,60° and 90° triangle.

By using Cosine formula,

Cos60° = \frac{base}{perpendicular}

Cos60° = \frac{2.5}{L}

\frac{1}{2} = \frac{2.5}{L}

∴ L = 5 meter

Hence, length of wall is 5 meters.

\bigstar\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined\end{tabular}}

Attachments:
Similar questions