Math, asked by princesssyolo2978, 11 months ago

A ladder makes an angle of 60° with tha horizontal and reaches upto the height of 5 meters on wall.find tha length of the ladder

Answers

Answered by BrainlyConqueror0901
41

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore  Length \: of \: ladder =  \frac{10}{ \sqrt{3} } \: m}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a ladder makes an angle of 60° with tha horizontal and reaches upto the height of 5 meters on wall.

• We have to find tha length of the ladder.

 \underline \bold{Given : } \\  \implies Angle \: of \: elevation = 60 \degree \\   \\  \implies Height \: of \: wall = 5 \: m \\  \\ \underline \bold{To \: Find : } \\  \implies Length \: of \: ladder = ?

• According to given question :

  \bold{Using \: properties \: of \: height \: and \: distance : } \\  \implies sin \: 60 \degree =  \frac{p}{h}  \\  \\  \implies  \frac{ \sqrt{3} }{2}  =  \frac{Height \: of \: wall}{Length \: of \: ladder}  \\  \\  \implies  \frac{ \sqrt{3} }{2}  =  \frac{5}{x}  \\  \\  \implies  \sqrt{3} x = 10 \\  \\   \bold{\implies  x = \frac{10}{ \sqrt{3} }  \: m} \\  \\   \bold{\therefore  Length \: of \: ladder =  \frac{10}{ \sqrt{3} } \: m}

Answered by Anonymous
35

Answer:

\bold{\therefore length \: of \: ladder =  \frac{10}{ \sqrt{3} } \:  m}

Step-by-step explanation:

 \to sin  \: 60 \degree =  \frac{p}{h}  \\  \\  \to  \frac{ \sqrt{3} }{2}  =  \frac{5}{h}  \\  \\  \to  \sqrt{3} h = 10 \\  \\  \to h =  \frac{10}{ \sqrt{3} }  \: m \\  \\   \bold{\therefore length \: of \: ladder =  \frac{10}{ \sqrt{3} } \:  m}

Similar questions