Math, asked by jaleswat8414, 1 year ago

A ladder reaches a wall upto a height of 16m and the foot of the ladder 8m away
from the base of the wall find the length of ladder

Answers

Answered by saisagar6129
1
Height of the wall be h
Distance from the foot of the ladder and wall be x
Let the ladder length be l

From Pythagoras theorem
 {h}^{2}   +  {x}^{2}  =  {l}^{2}
 {16}^{2}  +  {8}^{2}  =  {l }^{2}
 l  =  \sqrt{320}
l =  \sqrt{16 \times 20}
l = 4 \sqrt{20}
l = 8 \sqrt{5} m



Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Length\:of\:ladder=17.88\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a ladder reaches a wall upto a height of 16m and the foot of the ladder 8m away from the base of the wall

• Wh have to find the length of ladder.

  \green{\underline \bold{Given :}} \\   : \implies   \text{Distance\:between\:wall\:and\:foot\:of\: ladder= 8\: m} \\ \\  :   \implies  \text{Heigh\:of\:wall= 16\:m} \\  \\    \red{\underline \bold{To \: Find:}} \\  :  \implies  \text{Length\:of\: ladder = ?}

• Accroding to given question :

 \bold{In  \: \triangle \: ABC} \\   : \implies   {h}^{2}   =  {p}^{2}  +  {b}^{2}  \:  \:  \:   \:  \:  \:  \:  \: \text{(by \: phythagoras \: theoram}) \\  \\  :  \implies  {(AC)}^{2}  =  {16}^{2}  +  {8}^{2}  \\  \\  :  \implies  (AC)^{2} =256+64\\  \\  :  \implies  {(AC)}^{2} =320  \\ \\     : \implies  AC =  \sqrt{320}  \\  \\  \green{: \implies  \text{AC=17.88\:m}}

Attachments:
Similar questions